Exercise 1. If $\varphi : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ is a map from the circle to itself, the map $\psi = \varphi/\varphi(1)$ maps 1 to 1 and hence induces a morphism $\pi_1(\mathbb{S}^1, 1) \simeq \mathbb{Z}$ to itself, which must be of the form $\gamma \mapsto \gamma^n$ for a uniquely determined integer n. We call this n the *degree* of the map φ .

We say that a map $f : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ is even if f(z) = f(-z) for all z and odd if f(-z) = -f(z) for all z.

You may freely use the basic properties of the degree, especially 8.15, 8.16 and 8.17 from Lee's book.

- 1) Show that every even map has even degree.
- 2) Show that every odd map has odd degree, as follows.
 - a) Let $p_2 : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ be the two-sheeted covering $z \mapsto z^2$. Show that if f is odd, there exists a map $g : \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ such that $p_2 \circ f = g \circ p_2$.
 - b) Show that if deg(f) is even then g lifts to a map $\tilde{g}: \mathbb{S}^1 \longrightarrow \mathbb{S}^1$ such that $p_2 \circ \tilde{g} = g$.
 - c) Show that $\tilde{g} \circ p_2$ and f are both lifts of $g \circ p_2$ that agree at either 1 or -1. Derive a contradiction.
- 3) Show that for any continuous map $F : \mathbb{S}^2 \longrightarrow \mathbb{R}^2$ there exists a point $x \in \mathbb{S}^2$ such that F(x) = F(-x).

Hint: *if not*,
$$x \mapsto \frac{F(x)-F(-x)}{\|F(x)-F(-x)\|}$$
 maps \mathbb{S}^2 to \mathbb{S}^1 and restricts to an odd map from \mathbb{S}^1 to itself.

This is the Borsuk-Ulam theorem in dimension 2.

Exercise 2. Let X be the comb space, defined as the subspace of \mathbb{R}^2 consisting of the four sides of the square $[0.1] \times [0, 1]$ together with the segments of the vertical lines $x = 1/2, 1/3, \ldots, 1/n, \ldots$ inside the square. Show that for any covering space $E \longrightarrow X$ there exists some neighbourhood of the left edge that lifts homeomorphically to E. Deduce that X has no simply connected covering.

Exercise 3. Let $p: E \longrightarrow X$ be a covering map. Show that E is compact if and only if X is compact and p is a finite-sheeted covering.