Exercise 1. Let n be a fixed integer. Show that the Gram-Schmidt orthonormalization process provides a deformation retraction

$$r: \operatorname{GL}_n(\mathbb{R}) \longrightarrow \operatorname{O}_n(\mathbb{R})$$

from the set of invertible $n \times n$ real matrices to the set of $n \times n$ orthogonal matrices.

Exercise 2. Let X be a topological space. Suppose there exists a covering

$$X = \bigcup_{\lambda \in L} U_{\lambda}$$

of X by open subsets with the following properties :

- (i) For any arbitrary $\lambda, \mu \in L$, there exists $\nu \in L$ such that $U_{\lambda} \cup U_{\mu} \subset U_{\nu}$.
- (ii) For each $\lambda \in L$, U_{λ} is path connected and for every $x_{\lambda} \in U_{\lambda}$, the homomorphism

$$(i_{\lambda})_*: \pi_1(U_{\lambda}, x_{\lambda}) \longrightarrow \pi_1(X, x_{\lambda})$$

is null. Prove that X is simply connected.

Exercise 3. Prove that every 3×3 real matrix whose entries are all positive admits a positive eigenvalue.

Hint: Let A be such a matrix. Consider the subset $P \subset S^2$ of unit vectors in \mathbb{R}^3 whose coordinates are all positive. Show that A induces a map $f: P \longrightarrow P$ defined by $f(x) = \frac{A(x)}{||A(x)||}$ and find a fixed point of f.

Exercise 4. Let (X, d_X) be a metric space. Fix a point $x_0 \in X$ and let $\mathcal{P}(X, x_0)$ be the set of paths

$$a:[0,1]\longrightarrow X$$

starting at x_0 . Make $\mathcal{P}(X, x_0)$ into a metric space by setting $d(a, b) = \sup\{d_X(a(s), b(s)), s \in [0, 1]\}$. Show that this metric space is contractible.