Exercise 1. Let X be a topological space. Define the suspension SX of X by

$$SX = \frac{X \times [0, 1]}{(x_1, 0) \sim (x_2, 0) \; ; \; (x_1, 1) \sim (x_2, 1) \; , \forall (x_1, x_2) \in X^2}$$

- 1) Show that suspension defines a functor Top \longrightarrow Top (ie show that maps of topological spaces induce maps on suspensions).
- 2) Show that for any topological space X and any integer $p \ge 1$ we have $H_p(X) = H_{p+1}(SX)$.
- 3) Show that for all $n \ge 0$, $S\mathbb{S}^n = \mathbb{S}^{n+1}$.
- 4) Let $n \ge 1$. If $f : \mathbb{S}^n \longrightarrow \mathbb{S}^n$ is map on the *n*-sphere $(n \ge 1)$ by the preceding question the suspension Sf is a map on the n + 1-sphere. Show that these maps have the same degree, ie

$$\deg(f) = \deg(Sf)$$

- 5) Let $1 \leq i \leq n$ and $f : \mathbb{S}^n \longrightarrow \mathbb{S}^n$ be the map sending $(x_1, ..., x_i, ..., x_{n+1})$ to $(x_1, ..., -x_i, ..., x_{n+1})$. Show that f has degree -1.
- 6) Show that the antipodal map

has degree $(-1)^{n+1}$.

Exercise 2. In this exercise we prove that a sphere of positive even dimension cannot be given the structure of a topological group. Given a group G acting as a group of homeomorphisms of a space X, we say that G acts *freely* if the only element from G which has any fixed points is the identity element. Let g, h be two elements, unequal to the identity element, from a group G acting freely on \mathbb{S}^n , where n > 0 is even.

- (a) Prove that both g and h have degree -1.
- (b) Prove that gh is the identity element.
- (c) Conclude that G is either $\mathbb{Z}/2\mathbb{Z}$ or the trivial group.
- (d) Prove that \mathbb{S}^n is not a topological group.