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Introduction

Background
Let g ≥ 2. Mumford [Mum83] set up a Chow ring on the moduli space Mg of
genus g curves (and on its Deligne–Mumford compactification Mg). He modeled
this construction after the enumerative geometry of the Grassmannians, where
canonical elements of the Chow ring of a Grassmannian are given by the Chern
classes of the universal vector bundle and the universal quotient bundle. He defined
canonical classes κi (i ≥ 0) in the Chow ring of Mg by taking pushforwards of
powers of the first Chern class of the relative cotangent bundle ωCg/Mg

of the
universal family p : Cg → Mg. The tautological ring R∗(Mg) is then defined as
the subring of the Chow ring of Mg generated by these κ-classes. Mumford proved
that all Chern classes of the Hodge bundle p∗ωCg/Mg

of the universal family lie in
the tautological ring Mg.

Moreover, Mumford proved that the tautological ring R∗(Mg) is generated by
the classes κ1, . . . , κg−2. Looijenga [Loo95] then proved that the tautological ring
R∗(Mg) vanishes in degrees higher than g − 2, and that Rg−2(Mg) is at most
one-dimensional, and spanned by κg−2. Faber [Fab97] then proved that κg−2 is
nonzero, and hence that Rg−2(Mg) is one-dimensional. He then conjectured in
[Fab99] that R∗(Mg) is a Gorenstein algebra: that is, for all 0 ≤ d ≤ g − 2 the
pairing

Rd(Mg)×Rg−2−d(Mg) → Rg−2(Mg) ∼= Q,

induced by multiplication in the Chow ring, is perfect. Faber’s conjecture has been
verified for all g ≤ 23 (see [Fab13]), but for g = 24 not enough relations have yet
been found to verify the conjecture.

Rather than fixing g ≥ 2, one could study the behavior of the cohomology
of Mg as g tends to infinity. Mumford conjectured in [Mum83] that the homo-
morphism Q[κ1, κ2, . . . ] → H∗(Mg,Q) is an isomorphism in degrees ≤ k, where
k tends to infinity as g tends to infinity. In other words: the only cohomology
classes that occur on Mg for all g ≥ 2 are the κ-classes, and there are no nontriv-
ial relations among these classes that hold for arbitrary values of g. Harer [Har85]
showed that for all k ≥ 0 there is a g for which we have isomorphisms

Hk(Mg;Q) ∼= Hk(Mg+1;Q) ∼= Hk(Mg+2;Q) ∼= . . . .

In other words: for each k ≥ 0 the kth cohomology of Mg stabilizes as g tends to
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Introduction

infinity. Miller [Mil86] and Morita [Mor87] showed that the homomorphism

Q[κ1, κ2, . . . ] → H∗(Mg;Q)

is injective in degrees ≤ k, where k tends to infinity as g tends to infinity. Finally,
Mumford’s conjecture was proved by Madsen and Weiss in [MW07].

The moduli space Mg has also been studied using analytical tools. Faltings
[Fal84] assigns to each admissible line bundle L on a Riemann surface X a her-
mitian metric on the determinant of cohomology detRΓ(L). By comparing these
metrics with a canonical metric on the line bundle O(−Θ) on the Jacobian, Falt-
ings obtains an invariant δ(X) of the Riemann surface X. This invariant gives rise
to a function δg : Mg → R. Hain and Reed [HR04] construct a natural metric on
the biextension line bundle on Mg. This line bundle is isomorphic to the (8g+4)th
power of the Hodge bundle; by comparing metrics they obtain another invariant
βg : Mg → R, defined up to a constant. Another invariant ag = 2πφg : Mg → R
was found by Kawazumi [Kaw08; Kaw09] and Zhang [Zha10] in different contexts.
Kawazumi constructed two differential 2-forms eJ , eA on Cg that both represent
the class of the relative tangent bundle of the universal family Cg → Mg. He
shows that these forms are not equal but are related by the identity

eA − eJ =
−2

√
−1

2g(2g + 1)
∂∂ag.

De Jong [dJon13; dJon16] showed that the invariants of Faltings, Hain–Reed, and
Kawazumi–Zhang are linearly dependent.

Overview
In this thesis we will generate differential 2-forms on the moduli space Mg, the
universal family Cg → Mg, and higher powers of Cg, by listing various canonical
hermitian line bundles on these moduli spaces and taking their first Chern forms.
By using these 2-forms we will construct an analytic analogue to the tautolog-
ical rings, the rings of tautological differential forms. We will show that these
rings are not ‘too big’ (i.e. they are finite-dimensional in each degree, and hence
finite-dimensional). By using a canonical line bundle on the universal Jacobian
bundle Jg → Mg we will moreover be able to compute various relations between
tautological differential forms. We will carry out some of these computations in a
combinatorial framework based on marked graphs.

In Chapter 1 we will recall the general theory of families of manifolds. We
will show that every family of oriented manifolds admits a uniquely defined fiber
integral operator. Afterwards we will specialize to holomorphic families of compact
Riemann surfaces of a fixed genus. Some hermitian line bundles that appear
canonically on such families will be constructed, and we will find some canonical
isometries among them.

The theory of moduli spaces is explored in Chapter 2. We will recall that no fine
moduli space Mg of compact Riemann surfaces of genus g exists in the category
of complex manifolds. The problem is that compact Riemann surfaces admit
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nontrivial automorphisms that can be exploited to construct nontrivial isotrivial
families by twisting. One solution to this problem is adding extra structure to
our Riemann surfaces, such as Teichmüller structures, thereby annihilating any
nontrivial automorphisms. Another solution, by Deligne and Mumford [DM69],
is to construct the moduli space Mg as a stack, rather than a complex manifold.
Although Mg is not a complex manifold anymore, we may still define objects such
as differential forms and hermitian line bundles on Mg, and we will discuss why
such objects on Mg can be viewed as objects that occur universally on families of
compact Riemann surfaces of genus g.

In Chapter 3 we will take a detour and discuss r-marked graphs, which are
graphs for which r vertices are marked with the integers 1, . . . , r. These graphs
give us a combinatorial framework for working with tautological differential forms
in Chapter 4. We will discuss contraction operations on marked graphs, and show
that there are only finitely many contracted graphs up to isomorphism. In fact,
given an integer d ∈ Z, the number of isomorphism classes of contracted r-marked
graphs of characteristic r − d can be expressed as a polynomial in r:

Theorem 3.8.1. Let d ∈ Z be an integer. If d is negative, then for any r ≥ 0
there are no contracted r-marked graphs of characteristic r − d.
If d ≥ 0, then there exists a polynomial fd ∈ Q[x] of degree 2d such that the
number of isomorphism classes of contracted r-marked graphs of characteristic
r − d is equal to fd(r) for all r ≥ 0. The leading coefficient of fd is 1/(2d · d!).

We will compute the polynomial fd for all d ≤ 4.
Finally, in Chapter 4, we will construct rings of tautological differential forms

on Mg, Cg, and Crg (r ≥ 2), where Cg → Mg is the universal family of compact
Riemann surfaces of genus g. Not every definition of the tautological Chow rings
translates immediately to the analytical setting; we will discuss several of these
definitions and see which translates best. Next we will give a method of construct-
ing tautological differential forms from marked graphs, and show that tautological
forms associated to contracted graphs span the ring of tautological forms, thereby
proving that the rings of tautological forms are finite-dimensional in each degree,
and hence finite-dimensional:

Theorem 4.6.1. For all r ≥ 0 and g ≥ 2, the ring of tautological forms R∗(Crg)
is finite-dimensional.

We will fully compute the degree 2 part of the ring of tautological forms on
Crg for all r ≥ 0, and provide an algorithm for computing more relations among
tautological differential forms associated to marked graphs.

v





Chapter 1

Families of curves

The first chapter serves as a preliminary chapter, where we establish some of the
notation and theory we will use in Chapter 4. In Section 1.1 we will study fam-
ilies of manifolds, which are roughly speaking collections of manifolds smoothly
parametrized by another manifold. Moreover we show why the category of mani-
folds does not have all fiber products, and show that fiber products of families of
manifolds do exist. In Section 1.2 we will study currents, and in particular we will
look at the pushforward operator on currents. Afterwards, in Section 1.3, we will
be constructing the fiber integral operator along families of manifolds, which is
the smooth analogue of the pushforward operator on currents. Finally, in Section
1.4 we will discuss hermitian vector bundles, and construct some hermitian line
bundles that appear canonically on families of curves. The theory discussed in
this section will allow us to construct tautological forms on families of curves and
find relations amongst them, which will be done in Chapter 4.

In this thesis the terms ‘manifold’ and ‘smooth manifold’ mean the same thing:
a locally ringed space that is second-countable, Hausdorff, and locally isomorphic
to the Euclidean space Rn (for some n ≥ 0) with its sheaf of smooth real-valued
functions. Equivalently, a manifold is a second-countable Hausdorff topological
space equipped with a smooth atlas. While we do not require that manifolds are
connected, we do assume that all manifolds are equidimensional. This is merely
for our convenience; most theory immediately generalizes to nonequidimensional
manifolds by reducing to equidimensional components.

Likewise, complex manifolds are always assumed to be second-countable, Haus-
dorff, and equidimensional.

We will assume that the reader is familiar with the elementary theory of mani-
folds as in [Lee03] and [dRha84]. For the reader’s convenience we will be repeating
some definitions.

1.1 Families of manifolds
In this section, we consider submersions: morphisms of manifolds whose fibers
are, again, manifolds. Moreover, we will define oriented submersions. These are
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1

submersions whose fibers are equipped with orientations that vary continuously.

1.1.1 Submersions

Let f : X → Y be a morphism of manifolds. Recall that f is a submersion if
for all points x ∈ X the associated map of tangent spaces dfx : TX,x → TY,f(x) is
surjective. So submersions are the analytic analogue to the smooth morphisms in
the setting of algebraic geometry.

Example 1.1.1. If X and Y are two manifolds, then the projection p2 : X×Y →
Y is a submersion.

By the Constant Rank Theorem ([Lee03, Theorem 4.12]) a submersion locally
looks like a projection Rr×Rn → Rn. More precisely, if f : X → Y is a submersion,
then for each point x ∈ X we can construct a commutative diagram

U Rr × Rn

V Rn
f |U p2

where n = dim(Y ) and r + n = dim(X), where U ⊆ X and V ⊆ Y are open
neighborhoods of x and f(x), respectively, such that f(U) ⊆ V , and where the
horizontal arrows are open immersions of manifolds.

Note that in the above situation the fibers of f are locally isomorphic to Rr.
Indeed, the fibers of a submersion f : X → Y are properly embedded submanifolds
of X; see [Lee03, Theorem 5.12]. In other words, the fibers of a submersion
f : X → Y form a family of manifolds parametrized by the points of Y . By
using [Lee03, Theorem 5.29] one can easily show that for any y ∈ Y the fiber
Xy = f−1(y) is the fiber product in the category of manifolds of the morphisms
{y} → Y and f : X → Y :

Xy = X ×Y {y}.

In Section 1.1.2 we will look further into fiber products in the category of manifolds.

Definition 1.1.2. A family of manifolds is a surjective submersion of manifolds
f : X → Y . A family of compact/connected/. . . manifolds is a family of manifolds
whose fibers are all compact/connected/. . . manifolds.

Lemma 1.1.3. Let f : X → Y be a family of compact connected manifolds.
Then f is a proper map.

Proof. First let f : X → Y be any continuous map of topological spaces. We
define an equivalence relation ∼ on X, where two points x1, x2 are equivalent if
and only if f(x1) = f(x2) =: y and the points x1, x2 lie in the same connected
component of the fiber f−1(y). The component decomposition is the decomposition

2
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of f into the continuous maps X → X/∼ → Y . By [WD79, B.III] the quotient
map X → X/∼ is closed if X and Y are Hausdorff, X is locally compact, and all
connected components of all fibers of f are compact.

This is clearly the case if f : X → Y is a family of connected compact manifolds.
Moreover, in that case, the map X/∼ → Y is a bijection. As f is a surjective
submersion, it is itself a quotient map ([Lee03, Proposition 4.28]). It follows that
the map X/∼ → Y is a homeomorphism, and hence f is closed.

We find that f is a closed map with compact fibers, and therefore f is proper
([Lee03, A.53]).

Ehresmann’s fibration theorem [Ehr52; Voi02, Theorem 9.3] states that proper
submersions with a contractible base are, in fact, trivial fiber bundles.

Theorem 1.1.4 (Ehresmann). Let f : X → Y be a proper submersion of man-
ifolds, and assume that Y is contractible. Then f is a trivial smooth fiber bun-
dle.

As every manifold can be covered with contractible opens, we immediately
obtain the following.

Corollary 1.1.5. Let f : X → Y be a proper submersion of manifolds. Then f
is a smooth fiber bundle.

In particular we find that families of compact connected manifolds are smooth
fiber bundles.

We will be using the following lemma later.

Lemma 1.1.6. Let f : X → Y be a submersion of manifolds. Then the pullback
operator on differential forms

f∗ : A∗(Y ) → A∗(X)

is injective.

Proof. Let x ∈ X be a point. As f is a submersion, the tangent map df : TX,x →
TY,f(x) is surjective, and dually, the cotangent map T ∗

Y,f(x) → T ∗
X,x is injective.

Taking exterior algebras yields the pullback map∧
T ∗
Y,f(x) →

∧
T ∗
X,x,

which is injective, too. As differential forms on Y and X are sections of the bundles∧
T ∗
Y and

∧
T ∗
X , respectively, the lemma follows.

1.1.2 Fiber products of manifolds
The category Man of manifolds is not as well-behaved as, say, the category of
schemes. For instance, the category Man does not have all fiber products. In this
section we will show that a fiber product of two morphisms of manifolds does exist
if one of the morphisms is a submersion.
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1

Proposition 1.1.7. Let f : X → S and g : Y → S be morphisms of manifolds. If
f is a submersion, then the fiber product X ×S Y exists in Man. The underlying
topological space ofX×SY is the fiber product of the underlying topological spaces
of X, Y , and S. The induced morphism X ×S Y → Y is again a submersion.

We will prove this proposition later in this section. Before we prove this propo-
sition we will look at some properties a fiber product should satisfy if it exists,
and study some cases in which fiber products of manifolds do not exist or behave
unexpectedly.

Suppose that S is a manifold, and let f : X → S and g : Y → S be two
morphisms of manifolds. Suppose, moreover, that the fiber product X×S Y exists
in the corresponding category of manifolds. As the set of points of any manifold
can be identified with the set of morphisms from the one-point manifold to that
manifold, one deduces that the set of points of X ×S Y is the fiber product in the
category of sets:

|X ×S Y | = |X| ×|S| |Y | in Set.

Moreover, let T be the fiber product of f and g in the category Top of topological
spaces. By the universal property of the fiber product there exists a continuous
map X ×S Y → T . As the sets of points underlying T and X ×S Y both equal
the fiber product in the category of sets, this map is moreover a bijection. We
conclude that X ×S Y and T have the same underlying sets, and the topology on
X ×S Y is stronger than the topology on T . The following example shows that
this topology can be strictly stronger.

Example 1.1.8. Consider the morphism of manifolds

f : R → R : x 7→

{
exp(−1/x2) sin(2π/x) if x ̸= 0

0 if x = 0.

Moreover, let g : {0} → R be the inclusion. The topological fiber product of these
two morphisms is then simply the subspace

f−1(0) = {0} ∪ {1/n : n ∈ Z \ {0}} ⊆ R.

This space, however, is not locally connected, so it cannot be (the topological
space underlying) the fiber product in the category of manifolds.
In fact, one easily checks that the space f−1(0) equipped with the discrete topology
is the fiber product of f and g in the category of manifolds. Its underlying topology
is strictly stronger than the subspace topology on f−1(0) ⊆ R.

The following example shows a case in which a fiber product does not exist at
all.

Example 1.1.9. Let f : R2 → R be the morphism (x, y) 7→ xy, and let g : {0} →
R be the inclusion. Suppose that the fiber product F of these two morphisms

4
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exists. The underlying set is

{(x, y) ∈ R2 : xy = 0},

and the underlying topology is stronger than the subspace topology. Moreover,
one can construct using the universal property a morphism R → F : x 7→ (x, 0),
which shows that the subset of F consisting of the x-axis is in fact homeomorphic
to R, and similarly for the y-axis; it follows that the topology on F in fact equals
the subspace topology. However, this can never be the topology of a manifold.
Indeed, if U ⊆ F is an open neighborhood of the origin, then removing the origin
from U breaks U into at least four connected components. In particular such an
U can never be homeomorphic to a ball in Rn. We must conclude that the fiber
product of f and g does not exist in the category of manifolds.

Let f : X → S and g : Y → S be two morphisms of manifolds. We say that f
and g are transversal if for all x ∈ X and y ∈ Y with f(x) = g(y) =: s the linear
map dfx + dgy : TX,x ⊕ TY,y → TS,s is surjective. The following lemma shows that
the fiber product of f and g exists if f and g are transversal.

Lemma 1.1.10. Let f : X → S and g : Y → S be morphisms of manifolds, and
assume that f and g are transversal. Then the subset

X ×S Y = {(x, y) ∈ X × Y : f(x) = g(y)} ⊆ X × Y

has the structure of an embedded submanifold of dimension dimX+dimY −dimS,
and this submanifold is the fiber product of f and g in the category of smooth
manifolds. Its underlying topological space is the topological fiber product of f
and g.
If (x, y) ∈ X ×S Y is any point, then the tangent space to X ×S Y at (x, y) is the
subspace of the tangent space to X × Y at (x, y) given by

TX×SY,(x,y) = {(v, w) ∈ TX×Y,(x,y) ∼= TX,x × TY,y : dfx(v) = dgy(w)}.

Proof. Consider the morphism

h : X × Y → S × S : h(x, y) = (f(x), g(y)).

As f and g are transversal, it is straightforward to prove that h is transversal to
the inclusion map of the diagonal ∆ ⊆ S × S. From [Lee03, Theorem 6.30] it
follows that

F := h−1(∆) = {(x, y) ∈ X × Y : f(x) = g(y)}
is an embedded submanifold of X × Y whose codimension equals the dimension
of S, and from [Lee03, Theorem 5.29] one deduces that F satisfies the universal
property of the fiber product of f and g. Moreover, F ⊆ X × Y with its subspace
topology is also the topological fiber product.

Let (x, y) ∈ F be a point with s := f(x) = g(y), and consider the linear map

ϕ : TX×Y,(x,y) ∼= TX,x × TY,y → TS,s : (v, w) 7→ dfx(v)− dgy(w).
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As f and g are transversal, it follows that ϕ is surjective. The natural diagram

TF,(x,y) TX,x

TY,y TS,s

dp1

dp2 df

dg

(1.1.11)

commutes, so the tangent space TF,(x,y) ⊆ TX×Y,(x,y) to F at (x, y) is contained
in the kernel of ϕ. By comparing dimensions we find that TF,(x,y) = kerϕ.

The lemma allows us to prove Proposition 1.1.7.

Proof of Proposition 1.1.7. As f is a submersion, it is transversal to g. The fiber
product F = X ×S Y therefore exists by Lemma 1.1.10. By chasing through
diagram 1.1.11 one finds that the tangent map dp2 is surjective, so p2 is a submer-
sion.

Example 1.1.12. Let Y be a manifold, and let V ⊆ Y be an open submanifold.
Let f : V → Y denote the inclusion. Then f is a submersion. If g : X → Y is
a morphism of manifolds, then the fiber product of f and g is isomorphic to the
open submanifold

V ×Y X = g−1(V ) ⊆ X.

Example 1.1.13. If f : X → Y is a submersion, y ∈ Y is a point, and g : {y} → Y
is the inclusion, then the fiber product of f and g is the fiber Xy = f−1(y) of f
over y.

Example 1.1.14. Let X and Z be manifolds, and consider the projection p2 :
Z ×X → X, which is a submersion. If g : Y → X is any other morphism, then
the fiber product of p2 and g is Z × Y :

Z × Y Z ×X

Y X.

idZ ×g

p2 □ p2

g

1.1.3 Oriented submersions
In this section we will define what it means for a submersion to have oriented fibers.
Of course, we want to impose some continuity criterion on such orientations. For
example, if we consider the Möbius strip as a fiber bundle over S1 with fibers
homeomorphic to (0, 1), it is intuitively clear that all these fibers can be given an
orientation, but these orientations can never vary continuously over the base S1.

Recall that giving an orientation of a manifold X is equivalent to giving an
orientation of its tangent bundle TX . This leads to the following definition.
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Let f : X → Y be a submersion of manifolds. The relative tangent bundle
Tf = TX/Y on X is the kernel of the surjective morphism df : TX → f∗TY of
vector bundles on X. Note that for each y ∈ Y the restriction of TX/Y to the fiber
Xy = f−1(y) equals the tangent bundle TXy .

Definition 1.1.15. Let f : X → Y be a submersion of manifolds. An orien-
tation of f (or an orientation of the fibers of f) is an orientation of the relative
tangent bundle TX/Y . An oriented submersion is a submersion together with an
orientation.

Note that giving an orientation of the vector bundle TX/Y is equivalent to
giving an orientation of its determinant line bundle detTX/Y =

∧r
TX/Y , where r

denotes the rank of TX/Y .

Example 1.1.16. For any manifold X giving an orientation of X is equivalent
to giving an orientation of the morphism X → {∗}.

Example 1.1.17. Let F be an oriented manifold, let Y be any manifold, and
define X = F × Y . The projections p1 : X → F and p2 : X → Y induce an
isomorphism TX

∼−→ p∗1TF ×p∗2TY , and hence an isomorphism TX/Y
∼−→ p∗1TF . The

orientation of F , therefore, induces an orientation of p2.

Let f : X → Y and g : Y → S be two oriented submersions, with fibers of
dimension r and s, respectively. The composition gf : X → S can be equipped
with a canonical orientation, as follows. By using the exact sequences that define
the vector bundles of f , g, and gf , we get a commutative diagram as follows:

0 0

TX/S f∗TY/S

0 TX/Y TX f∗TY 0

f∗g∗TS

0 0

d(gf)

df

dg

from which we extract an exact sequence of vector bundles on X:

0 → TX/Y → TX/S
df−→ f∗TY/S → 0.

Choose any splitting of this exact sequence. This is always possible: we can
construct a Riemannian metric on TX/S by using partitions of unity, and then
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the tangent map df restricts to an isomorphism of the orthogonal complement of
TX/Y ⊆ TX/S with f∗TY/S . Note that such a splitting is not canonical. In any
case, we obtain an isomorphism

TX/Y ⊕ f∗TY/S
∼−→ TX/S ,

and by taking determinants we get an isomorphism of line bundles

detTX/Y ⊗ f∗ detTY/S
∼−→ detTX/S .

This latter isomorphism is canonical: it does not depend on the earlier choice of a
splitting. The orientations of f and g, therefore, canonically define an orientation
of gf .

Example 1.1.18. Let F1 and F2 be oriented manifolds, and let S be any manifold.
Define X = F1 × F2 × S and Y = F2 × S, and let f : X → Y and g : Y → S
be the obvious projections. The orientations of F1 and F2 induce orientations
of f and g (see Example 1.1.17) and hence an orientation of the projection gf :
F1 × F2 × S → S. This orientation agrees with the orientation of gf induced by
the product orientation of F1 × F2.

Example 1.1.19. Consider the Möbius strip M → S1 as a fiber bundle with fiber
(−1, 1). The submersion M → S1 does not have an orientation. Indeed, choose
an orientation of S1, and hence of the submersion S1 → {∗}. Any orientation of
the submersion M → S1 would induce an orientation of the composition M →
S1 → {∗}, and this would yield an orientation of M . As the Möbius strip is not
orientable, this cannot happen.

Example 1.1.20. Assume we have a cartesian diagram of manifolds

X ′ X

S′ S

f ′

h

□ f

g

with f a submersion. Note that f ′ is again a submersion. The differential map
dh : TX′ → h∗TX restricts to an isomorphism of relative tangent bundles TX′/S′

∼−→
h∗TX/S . In particular, any orientation of f induces an orientation of f ′ in a natural
way.

1.1.4 Holomorphic submersions and families of curves
A complex manifold (of dimension n) is a Hausdorff second-countable locally ringed
space that is locally isomorphic to the space Cn with its sheaf of holomorphic func-
tions. Equivalently, a complex manifold is a Hausdorff second-countable topologi-
cal space together with an atlas of charts to opens in Cn whose transition functions
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are all holomorphic. One-dimensional complex manifolds are also called Riemann
surfaces. As Cn ∼= R2n and biholomorphic maps are diffeomorphisms, we find that
every complex manifold has an underlying structure of a smooth manifold, whose
(real) dimension is twice the dimension of the complex manifold. In this section,
we will study holomorphic submersions: morphisms of complex manifolds whose
underlying morphism of smooth manifolds is a submersion. It turns out that the
fibers of holomorphic submersions are complex manifolds, allowing us to define
families of complex manifolds.

Two morphisms f : X → S and g : Y → S of complex manifolds are transversal
if the underlying morphisms of smooth manifolds are transversal. Analogous to
Lemma 1.1.10 we can prove that if f and g are transversal, then the subset

X ×S Y = {(x, y) ∈ X × Y : f(x) = g(y)}

is a complex submanifold of X × Y , and it is the fiber product of f and g in the
category of complex manifolds. See [FG02, Chapter IV.1] for more details.

A (holomorphic) submersion f : X → Y of complex manifolds is a morphism
of complex manifolds, such that the underlying morphism of smooth manifolds
is a submersion. If f : X → S is a holomorphic submersion, then for every
morphism g : Y → S of complex manifolds the fiber product X ×S Y in the
category of complex manifolds exists. In particular, the fibers of a submersion are
again complex manifolds: for s ∈ S, the fiber of f above s is

Xs = f−1(s) = X ×S {s}.

Recall that the space Cn is endowed with a canonical orientation. Consider
the holomorphic coordinates z1, . . . , zn and the corresponding smooth coordinates
x1, y1, . . . , xn, yn with zk = xk +

√
−1yk. Then the canonical orientation of Cn is

given by
dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn.

Biholomorphic maps are orientation-preserving, and it follows that each complex
manifold comes with a canonical orientation. The fibers of a holomorphic submer-
sion f : X → Y are complex manifolds, so they all have a canonical orientation.
By passing to coordinate charts one easily checks that these orientations define an
orientation of f , called the canonical orientation, and this orientation is compatible
with the canonical orientations of X and Y .

Definition 1.1.21. A curve is a compact connected Riemann surface. A family of
curves (of genus g) is a surjective holomorphic submersion whose fibers are curves
(of genus g).

It follows immediately that families of curves (of genus g) are stable under
base change. This makes it possible to talk about moduli spaces of genus g curves,
which we will do in Chapter 2.

Note that, by Corollary 1.1.5, the morphism of smooth manifolds underlying a
family of curves is a smooth fiber bundle. However, a family of curves is not locally
trivial if we consider the complex structure of its fibers. Consider the following
example.
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Example 1.1.22. Let H ⊂ C denote the upper half space

H = {z ∈ C : Im(z) > 0}.

The group Z2 acts on C×H by

(a, b) · (z, τ) = (z + a+ bτ, τ).

Let E = (C × H)/Z2. This is a complex manifold, the projection C × H → H
induces a morphism f : E → H, and this morphism is a family of curves of genus
1. For τ ∈ H the fiber Eτ is the complex torus C/(Z+Zτ). The (nonholomorphic!)
diffeomorphism

C×H → C×H : (z, τ) 7→ (Re(z) + Im(z) · τ, τ)

induces an isomorphism of smooth fiber bundles

Ei ×H E

H

∼

p2 f

where Ei = C/(Z+ Zi) denotes the fiber of i =
√
−1 under f .

It follows that, as a submersion of smooth manifolds, f is a trivial smooth fiber
bundle, with fibers diffeomorphic to the torus. However, the fibers of f are not all
mutually isomorphic as complex manifolds. The group SL2(Z) acts on H by[

a b
c d

]
· τ =

aτ + b

cτ + d
,

and the fibers over two points τ1, τ2 ∈ H are isomorphic as complex manifolds if
and only if τ1 and τ2 lie in the same orbit of this action. See, for example, [Hai11,
§1].

1.2 Currents

1.2.1 Currents on manifolds

Definition 1.2.1. Let U ⊆ Rn be an open subspace, and consider the set A∗
c(U)

of smooth forms on U with compact support. A current on U is then a R-linear
form

T : A∗
c(U) → R

that is continuous in the following sense: if K ⊆ U is a compact subset, and
{ωi}i≥0 is a sequence of forms in A∗

c(U) whose supports are all contained in K,
such that all the coefficient functions and all their partial derivatives converge
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uniformly to 0, then T (ωi) converges to zero.

In general, currents can be defined as follows.

Definition 1.2.2. Let X be a smooth manifold. A current on X is an R-linear
form

T : A∗
c(X) → R

such that for every open U ⊆ X and every isomorphism φ of U with an open
subset U ′ ⊆ Rn the composition

A∗
c(U

′)
φ∗

−−→ A∗
c(U) → A∗

c(X)
T−→ R

is a current on U ′. Here the middle arrow denotes extension by zero.

The R-vector space of currents on X is denoted by D∗(X).
A current T is said to have degree p if T (ω) = 0 for all differential q-forms with

q ̸= n− p. We denote by Dp(X) ⊆ D∗(X) the subspace of degree p currents. We
have a decomposition

D∗(X) =
⊕
p≥0

Dp(X).

For each open subset U ⊆ X we have an inclusion A∗
c(U) ⊆ A∗

c(X) and hence
a restriction map D∗(X) → D∗(U) : T 7→ T |U . The resulting presheaf D∗ of
currents on X is a sheaf. For each T ∈ D∗(X) the support SuppT of T is the
complement of the largest open subset U ⊆ X for which T |U = 0. Denote by
D∗
c (X) ⊆ D∗(X) the subspace of currents whose support is compact.

Let T : A∗
c(X) → R be a current, and let ω ∈ A∗(X) be a smooth form such

that SuppT ∩ Suppω is compact. If {χi}i∈I is any partition of unity of X with
compact supports, then the sum

T (ω) :=
∑
i∈I

T (χiω)

has only finitely many nonzero terms and hence converges. It is straightforward
to show that T (ω) does not depend on the chosen partition of unity. We therefore
see that T extends to a linear form on the space of smooth forms ω for which
SuppT ∩ Suppω is compact. In particular, for all T ∈ D∗

c (X) the compactly
supported current T extends to a linear form A∗(X) → R.

Example 1.2.3. Let X be a manifold, and let Z ⊆ X be a closed oriented
submanifold of codimension p. The Dirac delta current δZ ∈ Dp(X) associated to
Z is the current defined by

δZ(α) =

∫
Z

α|Z for all α ∈ A∗
c(X).

The support of δZ equals Z. In particular, if Z is compact, the current δZ extends
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to a linear form on A∗(X), given by the same integral formula for all α ∈ A∗(X).

Example 1.2.4. Suppose that X is an oriented manifold. If α ∈ A∗(X) is a
smooth form, we define a current [α] ∈ D∗(X) as follows:

[α](β) =

∫
X

α ∧ β for all β ∈ A∗
c(X).

We get an injective map A∗(X) → D∗(X). If α has degree p, then so does [α].
The support of [α] equals the support of α. We therefore also obtain an injective
map A∗

c(X) → D∗
c (X).

Example 1.2.5. If f is a locally integrable function on an n-dimensional oriented
manifold X, then f induces a current [f ] ∈ D0(X) given by

[f ](β) =

∫
X

f · β for all β ∈ Anc (X).

We call a current T on an oriented manifold smooth if it is of the form T = [α]
for some smooth differential form α.

Recall the exterior derivative d on the space of differential forms on X. Dually,
we have a linear operator

b : D∗(X) → D∗(X) : T 7→ Td = (ω 7→ T (dω)).

Using Stokes’ theorem, one easily proves that, given an oriented manifold X and
a smooth p-form α on X, one has:

b[α] = (−1)p+1[dα].

We define the exterior derivative on currents to be the linear operator d on D∗(X)
defined by

d = (−1)p+1b

for every degree p current T . We obtain the identity

d[α] = [dα]

for every oriented manifold X and every smooth form α on X.

1.2.2 Pushforwards of currents
Recall that we can pull back differential forms along a morphism f : X → Y
of manifolds. Dually, it is possible to push forward some currents along this
morphism. Suppose that T is a current on X, and assume that the composition
SuppT ↪→ X → Y is a proper map. If ω is any compactly supported form on Y ,
then

Supp(f∗ω) ∩ Supp(T ) ⊆ f−1(Supp(ω)) ∩ Supp(T )

is compact, and T (f∗ω) is well-defined.
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Definition 1.2.6. Let f : X → Y be a morphism of manifolds, and let T ∈ D∗(X)
be a current on X. If the composition Supp(T ) → X → Y is a proper map, we
define the pushforward f∗T ∈ D∗(Y ) of T along f to be the current on Y given
by

f∗T (ω) = T (f∗ω) for all ω ∈ A∗
c(Y ).

If T is a current of degree p, then f∗T is a current of degree p−(dimX−dimY ).
We obtain a pushforward map

f∗ : D∗
f (X) → D∗+dimY−dimX(Y ),

where D∗
f (X) denotes the set of currents on X whose support is proper over Y .

Example 1.2.7. Let us return to Example 1.2.3, where X is a smooth manifold
and Z ⊆ X is a closed oriented submanifold of codimension p. It follows that
the Dirac delta current δZ on X can be given as the pushforward of the smooth
current [1] on Z:

δZ = i∗[1]

where i : Z → X is the inclusion morphism.

It follows that the pushforward of a smooth current is not necessarily smooth
anymore. For instance, consider the inclusion of a point {x} → X into a manifold
with positive dimension. Then the current δx on X is the pushforward of the
smooth form [1] along the inclusion {x} → X, but δx is itself not smooth: there
are no smooth forms on X whose support equals {x}. If we make an additional
assumption that our morphism is a submersion, then pushforwards of smooth
currents along this morphism are again smooth.

Theorem 1.2.8. Let f : X → Y be an oriented submersion of oriented manifolds.
If T = [α] is a smooth current on X whose support is proper over Y , then f∗T is
a smooth current on Y .

We will postpone the proof of this theorem until Section 1.3. In this section
we will find that f∗[α] is the current associated to the smooth form

∫
f
α on Y

obtained by integrating α along the fibers of f .
Let f : X → Y be a morphism of manifolds. As d commutes with the pullback

map f∗ : A∗(Y ) → A∗(X), it follows that the pushforward f∗ : D∗(X) → D∗(Y )
commutes with the operator b. Therefore, we obtain for every current T ∈ D∗(X)
whose support is proper over Y :

f∗dT = (−1)dim(X)−dim(Y )df∗T.

1.2.3 Currents on complex manifolds
We can obtain complex-valued currents on a smooth manifold X by tensoring the
space of currents D∗(X) with the complex numbers:

D∗(X;C) = D∗(X)⊗R C.
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Such a current with complex coefficients can be written uniquely as T = T1 +√
−1 · T2, with T1 and T2 currents with real coefficients. If ω is a complex-valued

differential form on X with compact support, then ω = ω1 +
√
−1 · ω2 for some

real-valued differential forms ω1, ω2 with compact support, and

T (ω) = (T1(ω1)− T2(ω2)) +
√
−1 · (T1(ω2) + T2(ω1)).

Suppose now that X is a complex manifold of (complex) dimension n. Recall
that the space of complex-valued differential forms has a decomposition

A∗(X;C) =
⊕
p,q≥0

Ap,q(X).

Dually, the space of complex-valued currents has a decomposition

D∗(X;C) =
⊕
p,q≥0

Dp,q(X),

where Dp,q(X) is dual to An−p,n−qc (X). A current T ∈ D∗(X;C) is a (p, q)-current
if it is an element of Dp,q(X), which is the case if and only if

T (ω) = 0 for all ω ∈ Ar,sc (X;C) with (p+ r, q + s) ̸= (n, n).

Proposition 1.2.9. Let f : X → Y be a morphism of complex manifolds, and
let T ∈ D∗

f (X;C) be a complex-valued current on X whose support is proper
over Y . If T is a (p, q)-current, then f∗T is a (p − r, q − r)-current, where r =
dim(X)− dim(Y ).

Proof. Write n = dim(X) and m = dim(Y ), so r = n−m. Let ω ∈ As,tc (Y ) with
(p− r + s, q − r + t) ̸= (m,m). We need to prove that (f∗T )(ω) = 0. We have:

(f∗T )(ω) = T (f∗ω),

and as T is a (p, q)-current, f∗ω is an (s, t)-form, and (p+s, q+t) ̸= (m+r,m+r) =
(n, n), it follows that T (f∗ω) = 0.

Recall, moreover, that each complex manifold X has a canonical orientation,
so the notion of smooth currents exists on such a complex manifold. The inclusion
A∗(X;C) → D∗(X;C) restricts to inclusions

Ap,q(X) → Dp,q(X).

In particular, it holds that a differential form on X is a (p, q)-form if and only if
the associated current [α] is a (p, q)-current. This observation allows us to provide
an easy proof for Proposition 1.3.19.

Finally, notice that the Dolbeault operators can be generalized to a setting of
currents: for each p-current T and each smooth form α with compact support we
set

(∂T )(α) = (−1)p+1T (∂α) and (∂T )(α) = (−1)p+1T (∂α).

Note that ∂ maps (p, q)-currents to (p+ 1, q)-currents, and ∂ maps (p, q)-currents
to (p, q + 1)-currents. We have d = ∂ + ∂, and ∂2 = ∂

2
= 0.

14



1

1.3. Integration along fibers

1.3 Integration along fibers

In this section we will introduce the fiber integral operator along oriented submer-
sions of manifolds. See also [Sto70, Appendix II].

If f : X → S is a submersion of manifolds, we denote by

A∗
f (X) ⊆ A∗(X)

the ideal consisting of those differential forms ω on X whose support is proper over
S (that is, the composition Supp(ω) → X → S is a proper map). Notice that the
restrictions of such a form to the fibers of f are compactly supported differential
forms. The following definition, therefore, makes sense.

Definition 1.3.1. Let f : X → S be an oriented submersion whose nonempty
fibers have dimension r. A fiber integral (along f) is a linear map∫

f

: A∗
f (X) → A∗(S)

that satisfies the following properties:

1. For any k-form ω ∈ Akf (X) with k < r we have∫
f

ω = 0.

2. For any r-form ω ∈ Arf (X) the fiber integral
∫
f
ω is a 0-form (so a smooth

function) on S given by(∫
f

ω

)
(s) =

∫
Xs

ω|Xs for all s ∈ S.

3.
∫
f

satisfies the projection formula: for all ω ∈ A∗
f (X) and all η ∈ A∗(S) we

have: ∫
f

(ω ∧ f∗η) =
(∫

f

ω

)
∧ η.

It turns out that, in fact, these defining properties uniquely determine a linear
map A∗

f (X) → A∗(S).

Theorem 1.3.2. Let f : X → S be an oriented submersion. There exists a
unique fiber integral along f .

This theorem allows us to refer to this linear map as the fiber integral along f .
We will prove this theorem later in this section.

The fiber integral generalizes the integral operator on compactly supported
smooth forms on manifolds.
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Example 1.3.3. Let X be an oriented manifold. Let f : X → {∗} be the
associated oriented submersion. Note that A∗

f (X) = A∗
c(X). The integral operator∫

X
: A∗

c(X) → R = A∗({∗}) is a (and hence the) fiber integral along f .

Note that we have defined the fiber integral along f : X → S only for forms ω
on X whose support is proper over the base S. A priori, it might seem sufficient
for such a smooth form ω to have fiberwise compact support, which is a weaker
condition than having proper support over the base. However, the forms we obtain
in this way need not be smooth. This is demonstrated by the following example.

Example 1.3.4. Let b : R → R be a bump function: b is smooth, we have b > 0
on the interval (−1, 1), and b = 0 outside this interval. Moreover, we normalize b
in such a way that ∫

R
b(x)dx = 1.

Now consider the following smooth 1-form on R× R:

ω := yb(xy)dx.

Let p be the projection R×R → R mapping (x, y) to y. One easily checks that the
restriction of ω to each fiber of p is compactly supported. However, the function

(∫
p

ω

)
(y) =

∫
x∈R

yb(xy)dx =


−1 if y < 0

0 if y = 0

1 if y > 0

on R is not continuous at y = 0.
Indeed, the support of ω is not proper over R: it is the closed subset

Suppω = {(x, y) : y ̸= 0, |xy| < 1} ⊂ R× R,

and its fiber over the point 0 ∈ R is noncompact, as this fiber equals R.

1.3.1 First properties of the fiber integral

Before proving Theorem 1.3.2, we will deduce some properties of fiber integrals.
Fix an oriented submersion f : X → S, and let

∫
f
: A∗

f (X) → A∗(S) be a fiber
integral along f .

If a form ω ∈ A∗
f (X) is zero on f−1(V ) for some open V ⊆ S, then it is

reasonable to expect the fiber integral
∫
f
ω to be zero on V . This is indeed the

case, as the following proposition shows.
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Proposition 1.3.5. For every ω ∈ A∗
f (X) we have:

Supp

(∫
f

ω

)
⊆ f [Suppω].

Proof. Note that f [Suppω] ⊆ S is closed as the composition Suppω ↪→ X → S
is proper. Construct a smooth function χ : S → R with χ−1(0) = f [Suppω] (cf.
[Lee03, Theorem 2.29]). As χ ≡ 0 on f [Suppω], we have f∗χ ≡ 0 on Suppω. Now
apply the projection formula:

χ ·
∫
f

ω =

∫
f

ω ∧ f∗χ =

∫
f

0 = 0.

The support of
∫
f
ω must therefore be obtained in χ−1(0) = f [Suppω].

The fiber integral is a linear map and therefore commutes with finite sums. A
stronger statement holds.

Proposition 1.3.6. Let {ωi}i∈I be a family of forms in A∗
f (X). Assume that the

collection
{f [Suppωi]}i∈I

is locally finite in S. Then the collection

{Suppωi}i∈I

is locally finite in X, the sum
∑
i∈I ωi has proper support over S, and we have an

equality of forms on S: ∫
f

∑
i∈I

ωi =
∑
i∈I

∫
f

ωi.

Proof. Let K ⊆ X be compact. If i ∈ I is such that K ∩ Suppωi is nonempty,
then f [K] ∩ f [Suppωi] is nonempty. By assumption there can only be finitely
many such i ∈ I. We conclude that {Suppωi}i∈I is locally finite. It follows that⋃
i∈I Suppωi is closed in X, and it contains the support of

∑
i∈I ωi.

Now let L ⊆ S be compact. Then there are only finitely many i ∈ I for which
L∩f [Suppωi] is nonempty. Therefore f−1(L)∩Suppωi is empty for all but finitely
many i ∈ I. We have:

f−1(L) ∩ Supp

(∑
i∈I

ωi

)
⊆
⋃
i∈I

(f−1(L) ∩ Suppωi).

The right hand side of this equation is compact: f−1(L) ∩ Suppωi is compact
for all i ∈ I and nonempty for finitely many i ∈ I. We conclude that f−1(L) ∩
Supp

(∑
i∈I ωi

)
is compact, too, and

∑
i∈I ωi has proper support over S.

Let V ⊆ S be a relatively compact open subset, and let L denote its closure in
S. Take a smooth function χ : S → R such that χ|L ≡ 1 and such that Suppχ is
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compact (see [dRha84, Corollary 1]). If i ∈ I is such that ωi∧f∗χ is nonzero, then
Suppωi ∩ f−1(Suppχ) is nonempty, and hence f [Suppωi] ∩ Suppχ is nonempty.
By assumption, there can only be finitely many such i ∈ I. So ωi ∧ f∗χ = 0 for all
but finitely many i ∈ I. We can therefore exchange sum and integral as follows:

χ ·
∫
f

∑
i∈I

ωi =

∫
f

∑
i∈I

(ωi ∧ f∗χ) =
∑
i∈I

∫
f

(ωi ∧ f∗χ) = χ ·
∑
i∈I

∫
f

ωi,

where the first and last equalities follow from the projection formula. It follows
that the restrictions of

∫
f

∑
i∈I ωi and

∑
i∈I
∫
f
ωi to V are equal. As S can be

covered by such relatively compact opens, the desired result follows.

1.3.2 Construction of the fiber integral
In this section we will prove Theorem 1.3.2. We will first prove this theorem in the
case where the base S is such that the vector bundle A1

S is free, and then extend
to the general case by gluing.

Let X be a manifold, and let r ≥ 0 be an integer. We denote by A≤r
X the

subbundle of the vector bundle of differential forms A∗
X given by

A≤r
X =

r⊕
k=0

AkX .

Sections of A≤r
X , therefore, are finite sums of differential forms of degree at most

r. Similarly, for a submersion f : X → S we define

A≤r
f (X) =

r⊕
k=0

Akf (X) = A≤r(X) ∩A∗
f (X) ⊆ A∗

f (X).

Lemma 1.3.7. Let f : X → S be a submersion whose nonempty fibers have
dimension r. Assume that the vector bundle A1

S is free: there are 1-forms η1, . . . , ηn
on S such that

A1
S = A0

S · η1 ⊕ · · · ⊕A0
S · ηn.

For each subset I = {i1, . . . , ip} ⊆ {1, . . . , n} with i1 < · · · < ip define

ηI = ηi1 ∧ · · · ∧ ηip .

Then each form ω ∈ A∗(X) can be written as

ω =
∑

I⊆{1,...,n}

ωI ∧ f∗ηI

where each ωI is an element of A≤r(X).
If moreover ω has proper support over S, then we may assume each ωI has proper
support over S, too.
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1.3. Integration along fibers

In order to deduce the second part of the above lemma from the first part,
we will be using bump functions on X with proper support over the base S. The
existence of such bump functions is guaranteed by the following lemma.

Lemma 1.3.8. Let f : X → S be a morphism of manifolds, and let P ⊆ X be a
closed subset such that f |P : P → S is a proper map. Then there exists a smooth
function χ on X with proper support over S such that χ|P ≡ 1.

Proof. We will construct an open subset U ⊆ X such that P ⊆ U and such that
the closure Ū is proper over S. We can then let χ be any bump function for P
with support in U (cf. [Lee03, Proposition 2.25]).

As S is locally compact and paracompact, there exists an open covering S =⋃
i∈I Vi such that the collection {Vi}i∈I (and hence {V̄i}i∈I) is locally finite and

such that the closure V̄i ⊆ S is compact for all i ∈ I.
For all i ∈ I the set f−1(V̄i) ∩ P is compact. As X is locally compact and

paracompact, there exists an open Wi ⊆ X that contains f−1(V̄i) ∩ P , such that
the closure W̄i is compact.

Now define Ui = f−1(V̄i)∩Wi. The collection {Ui}i∈I is easily seen to be locally
finite, and the same therefore holds for the collection {Ūi}i∈I . Define U =

⋃
i∈I Ui.

We have Ū =
⋃
i∈I Ūi, and we claim that Ū → S is proper. If K ⊆ S is compact,

then

f−1(K) ∩ Ū = f−1(K) ∩
⋃
i∈I

Ūi =
⋃
i∈I

(f−1(K) ∩ f−1(V̄i) ∩Wi)

⊆
⋃
I∈I

f−1(K ∩ V̄i) ∩ W̄i.

As {V̄i}i∈I is locally finite, the intersection K∩V̄i is empty for all but finitely many
i ∈ I. The union

⋃
i∈I f

−1(K ∩ V̄i) ∩ W̄i, therefore, is a finite union of compact
sets, and hence compact. We find that f−1(K) ∩ Ū is compact, so Ū is proper
over S.

Proof of Lemma 1.3.7. We have an equality of vector bundles

A∗
S =

∧
A1
S =

⊕
I

A0
S · ηI

with I ranging over all subsets of {1, . . . , n}.
Consider the subbundles A≤r

X and f∗AS of the vector bundle A∗
X on X. Taking

wedge products induces a morphism of vector bundles

A≤r
X ⊗ f∗A∗

S → A∗
X .

We claim that this morphism is surjective. This can be checked locally. As f
locally looks like a projection p2 : F × S → S it suffices to prove surjectivity in
the case that f is such a projection. In that case the canonical morphism

p∗1A
∗
F ⊗ p∗2A

∗
S → A∗

F×S
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is an isomorphism, and it factors as

p∗1A
∗
F ⊗ p∗2A

∗
S → A≤r

F×S ⊗ p∗2A
∗
S → A∗

F×S

since p∗1A∗
F is a subbundle of A≤r

F×S . We see, in particular, that the canonical
morphism A≤r

F×S ⊗ p∗2A
∗
S → A∗

F×S is surjective, proving our claim.
As we are working with vector bundles over smooth manifolds, taking global

sections is exact and commutes with tensor products. We therefore obtain a sur-
jective map

A≤r(X)⊗A0(X) Γ(f
∗A∗

S) → A∗(X)

induced by the wedge product. As A∗
S is free and generated by ηI , the A0(X)-

module Γ(f∗AS) is free and generated by f∗ηI . We therefore find that every
element of A∗(X) can be written as described in the statement of the lemma.

Suppose, moreover, that ω ∈ A∗
f (X) has proper support over S. Write ω =∑

I ωI ∧ f∗ηI . By Lemma 1.3.8 there is a smooth function χ on X with χ ≡ 1 on
Suppω such that Suppχ is proper over S. We have

ω = χω =
∑
I

(χωI) ∧ f∗ηI .

Note that the support of each χωI is proper over S.

Lemma 1.3.9. Let f : X → S be an oriented submersion whose nonempty fibers
have dimension r. Let ω ∈ A≤r

f (X), and consider the following function on S:

T (ω) : S → R : s 7→
∫
Xs

ω|Xs .

Then T (ω) is smooth. In particular we obtain a linear map T : A≤r
f (X) → A0(S).

Proof. As f locally looks like a projection f : F × S → S with F ⊆ Rr and
S ⊆ Rn open subsets, we may use partitions of unity to restrict to the case where
f is such a projection and ω ∈ A≤r(F × S) has compact support. In this specific
case smoothness follows from the dominated convergence theorem.

Using Lemma 1.3.7 we can now show that there exists a unique fiber integral
along a submersion X → S if the base S is such that A1

S is free.

Lemma 1.3.10. Let f : X → S be an oriented submersion. Assume that A1
S is

free. Then there exists a unique fiber integral operator
∫
f
: A∗

f (X) → A∗(S).

Proof. Let r be the dimension of the nonempty fibers of f . Let T : A≤r
f (X) →

A0(S) denote the map defined in Lemma 1.3.9. By Lemma 1.3.7 and the defin-
ing properties of the fiber integral, a fiber integral

∫
f
, if it exists, is uniquely

determined by the identity∫
f

ω ∧ f∗η = T (ω) · η for all ω ∈ A≤r
f (X), η ∈ A∗(S).
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In order to prove existence of the fiber integral, choose 1-forms η1, . . . , ηn on
S such that

A1
S = A0

S · η1 ⊕ · · · ⊕A0
S · ηn.

If ω ∈ A∗
f (X) is any form, we can write ω =

∑
I ωI ∧ f∗ηI with ωI ∈ A≤r

f (X) for
all I ⊆ {1, . . . , n}. We wish to define∫

f

ω =
∑
I

T (ωI) · ηI ∈ A∗(S).

Of course we need to verify this does not depend on the choice of the forms ωI .
We claim that if ωI ∈ A≤r(X) are such that

∑
i∈I ωI ∧ f∗ηI = 0, then the degree

r part of each restriction ωI |Xs vanishes. In that case we have T (ωI) = 0 for all
I, and the operator

∫
f

is clearly well-defined.
Suppose that ωI ∈ A≤r(X) are such that

∑
I ωI ∧ f∗ηI = 0. As the claim can

be checked locally on X, and as submersions locally look like projections, we may
reduce to the case where f is a projection f : X = F ×S → S. Moreover, we may
shrink F such that A1

F is free. Let ξ1, . . . , ξr ∈ A1(F ) be 1-forms such that

A1
F = A0

F · ξ1 ⊕ · · · ⊕A0
F · ξr.

We then find that A∗(F ×S) is the free A0(F ×S)-module generated by the forms

g∗ξJ ∧ f∗ηK ,

where J and K range over all subsets of {1, . . . , r} and {1, . . . , n}, respectively. As
each ωI is an element of A≤r(F × S), there are (unique) smooth functions αIJK
on F × S such that

ωI =
∑
J,K

|J|+|K|≤r

αIJK · g∗ξJ ∧ f∗ηK .

Again J and K range over the subsets of {1, . . . , r} and {1, . . . , n}. We thus find:

0 =
∑
I

ωI ∧ f∗ηI =
∑
I,J,K

|J|+|K|≤r

αIJK · g∗ξJ ∧ f∗ηK ∧ f∗ηI .

Let R = {1, . . . , r}, and take the (g∗ξR ∧ f∗ηI)-part of the above sum to obtain:

αIR∅ · g∗ξR = 0,

so αIR∅ = 0. Restricting ωI to a fiber F of f yields the form∑
J

αIJ∅|F · ξJ .

Its degree r part is αIR∅ · ξR = 0, which proves the claim.
We thus obtain a well-defined linear map

∫
f
: A∗

f (X) → A∗(S). It is straight-
forward to verify that it satisfies the defining properties of the fiber integral.

The following lemma will allow us to generalize Lemma 1.3.10 to the setting
of arbitrary oriented submersions by gluing.

21



Chapter 1: Families of curves

1

Lemma 1.3.11. Let f : X → S be an oriented submersion, and assume that A1
S

is free. Let V ⊆ S be any open subset, and define U = f−1(V ). Let f ′ : U → V
denote the restriction of f to U . For all ω ∈ A∗

f (X) we have ω|U ∈ A∗
f ′(U), and

the following equality holds: (∫
f

ω

)∣∣∣∣
V

=

∫
f ′
ω|U .

Note that in this setting f ′ is a submersion, too, and the orientation of f
induces an orientation of f ′. As both A1

S and A1
V are free, fiber integrals along f

and f ′ exist and are unique.

Proof. If K ⊆ V is compact, then

(f ′)−1(K) ∩ Supp(ω|U ) = f−1(K) ∩ Supp(ω) ∩ U = f−1(K) ∩ Supp(ω)

is compact, too, so ω|U ∈ A∗
f ′(U).

By Lemma 1.3.7 it suffices to prove the given identity for ω ∈ A∗
f (X) of the

form ω = ω′ ∧ f∗η, with ω′ ∈ A≤r
f (X) and η ∈ A∗(S). In this case the given

identity follows directly from the defining properties of the fiber integrals.

We can now prove Theorem 1.3.2.

Proof. (Proof of Theorem 1.3.2) Let B be the collection consisting of all opens
V ⊆ S for which A1

V is free. Note that B is a basis for the topology of S.
We will first prove that a fiber integral

∫
f

along f , if it exists, is necessarily
unique. Let ω ∈ A∗

f (X). First assume that there exists some V ∈ B such that
Suppω ⊆ f−1(V ). Write U = f−1(V ). Lemma 1.3.7 implies that there are forms
ω′
1, . . . , ω

′
t ∈ A≤r

f (U) and η′1, . . . , η′t ∈ A∗(V ) such that

ω|V =

t∑
i=1

ω′
i ∧ f∗η′i.

Let χ ∈ A0(X) be a bump function for Suppω supported in U , and, likewise, let
ψ ∈ A0(S) be a bump function for f [Suppω] supported in V . For each 1 ≤ i ≤ t

let ωi ∈ A≤r
f (X) be the extension by zero of χ|U ·ω′

i ∈ A≤r
f (U), and let ηi ∈ A∗(S)

be the extension by zero of ψ|V · η′i. We then find:

ω =

t∑
i=1

ωi ∧ f∗ηi,

from which we deduce that
∫
f
ω is uniquely determined by the defining properties

of fiber integrals.
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In general, let S =
⋃
i∈I Vi be an open covering with Vi ∈ B for all i ∈ I, and let

{χi}i∈I be a partition of unity subordinate to this open covering. By Proposition
1.3.6 we then have for each ω ∈ A∗

f (X):∫
f

ω =

∫
f

∑
i∈I

f∗χi · ω =
∑
i∈I

∫
f

f∗χi · ω.

As the support of each f∗χi · ω is contained in f−1(Vi) we find that each fiber
integral

∫
f
f∗χi · ω is uniquely determined, and the same therefore holds for

∫
f
ω.

We will now construct a fiber integral along f by gluing. Consider the sheaf
f∗A

∗
f on S given by

f∗A
∗
f (V ) = A∗

f (f
−1(V )).

We will construct a sheaf morphism
∫
f
: f∗A

∗
f → A∗

S , which in particular induces
a linear map A∗

f (X) → A∗(S). Lemma 1.3.10 implies that for every V ∈ B we
have a unique fiber integral operator∫

f |f−1(V )

: A∗
f (f

−1(V )) → A∗(S).

Lemma 1.3.11 states that these fiber integrals are compatible with restrictions
and hence define a sheaf morphism on the basis B and therefore a sheaf morphism
f∗A

∗
f → A∗

S . We obtain a linear map on global sections
∫
f
: A∗

f (X) → A∗(S).
Note that it is uniquely determined by the following property: for each open V ∈ B
and each form ω ∈ A∗

f (X), we have(∫
f

ω

)∣∣∣∣
V

=

∫
f |f−1(V )

ω|f−1(V ).

We can prove that
∫
f

is in fact a fiber integral by verifying its defining properties
locally.

Remark 1.3.12. We have constructed the fiber integral along the oriented sub-
mersion f : X → S by ‘gluing’ fiber integrals along the induced submersions
f−1(V ) → V for each open V ⊆ S with A1

V free. Note that, in particular, this
implies that the fiber integral is well-behaved with respect to restrictions to open
subsets. More precisely, a stronger version of Lemma 1.3.11 holds: we no longer
need to assume that A1

S is free.

Another approach of constructing the fiber integral is provided by Stoll [Sto70];
we will briefly sketch the construction here. Let f : X → S be a submersion, and
let r, q ≥ 0. For each point s ∈ S Stoll then obtains a canonical linear map

Aq+r(X) → Ar(Xs)⊗R

q∧
T ∗
S,s,

where Xs = f−1(s) and where T ∗
S,s is the fiber of the cotangent bundle A1

S at s.
If f is the projection Rr ×Rn → Rn and if we let x1, . . . , xr and y1, . . . , yn denote
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the standard coordinates of Rr and Rn, respectively, then this linear map is given
by

α · dxI ∧ dyJ 7→

{
(α|Xs · dxI)⊗ dyJ if |I| = r

0 if |I| < r.

In general, the above linear map restricts to a linear map

Aq+rf (X) → Arc(Xs)⊗R

q∧
T ∗
S,s,

and composing this linear map with the integral operator
∫
Xs

: Arc(Xs) → R finally
yields a linear map

Aq+rf (X) →
q∧
T ∗
S,s.

By repeating this construction for each s ∈ S we obtain a function that maps
forms ω ∈ Ar+qf (X) to sections of the sheaf AqS . Stoll then shows that these
sections are smooth, and that the operator we obtain satisfies all properties one
would expect of the fiber integral. It is straightforward to prove that Stoll’s fiber
integral matches the one defined in this section.

1.3.3 More properties of the fiber integral
In this section we will prove some more properties of the fiber integral

∫
f

along an
oriented submersion f .

Let r denote the dimension of the nonempty fibers of f . The fiber integral
∫
f

maps k-forms with k < r to zero, and it maps r-forms to smooth functions. More
generally, we can show that the fiber integral maps k-forms to (k − r)-forms for
all k ≥ 0 (where it is understood that Ak−r(S) = {0} if k − r < 0).

Proposition 1.3.13. Let f : X → S be an oriented submersion whose nonempty
fibers have dimension r. For all k ≥ 0 and all ω ∈ Akf (X) we have

∫
f
ω ∈ Ak−r(S),

where Al(S) = 0 for all l < 0.

Proof. For k ≥ 0 we obtain a linear map Akf (X) → Ak−r(S) by composition:

Akf (X) ↪→ A∗
f (X)

∫
f−→ A∗(S) =

⊕
l∈Z

Al(S) ↠ Ak−r(S).

Taking the direct sum over all k ≥ 0 yields a linear map

A∗
f (X) → A∗−r(S).

It is straightforward to verify that this linear map is again a fiber integral, so it
must in fact be equal to

∫
f

by Theorem 1.3.2.

In Section 1.3.2 we have seen that the fiber integral can be computed locally
on the base. This fact can be used to prove the following base change formula.

24



1

1.3. Integration along fibers

Proposition 1.3.14 (Base change formula). Suppose we have a cartesian diagram
of manifolds

X ′ X

S′ S

f ′

h

□ f

g

where f (and hence f ′) is an oriented submersion. For every form ω ∈ A∗
f (X), we

have h∗ω ∈ A∗
f ′(X ′), and the following identity holds:∫

f ′
h∗ω = g∗

∫
f

ω.

Proof. A map between locally compact Hausdorff spaces is proper if and only if it
is universally closed. The map Suppω → S, therefore, is universally closed, and
hence the same holds for the map h−1(Suppω) → S′, which is therefore proper. As
Supph∗ω ⊆ h−1(Suppω) is a closed subset it follows that the induced morphism
Supph∗ω → S′ is proper, so h∗ω ∈ A∗

f ′(X ′).
As fiber integrals can be computed locally on the base, it suffices to prove

the given identity in the case where A1
S is free. In this case we may use Lemma

1.3.7 to reduce to the case where ω is of the form ω′ ∧ f∗η with ω′ ∈ A≤r
f (X)

and η ∈ A∗(S). Now the given identity follows immediately from the defining
properties of the fiber integral.

Lemma 1.3.15. Let f : X → S be an oriented submersion. Let U ⊆ X be an
open subset, and consider the induced submersion f |U : U → S. If ω ∈ A∗

f (X) is
such that Suppω ⊆ U , then∫

f |U
ω|U =

∫
f

ω ∈ A∗(S).

Proof. We may assume that A1
S is free. Let r denote the dimension of the

nonempty fibers of f . By Lemma 1.3.7 we can write

ω =

t∑
i=1

ωi ∧ f∗ηi

with ωi ∈ A≤r
f (X) and ηi ∈ A∗(S). By using a bump function for Suppω with

support in U we may assume that Suppωi ⊆ U for all 1 ≤ i ≤ t. The lemma now
follows immediately from the defining properties of the fiber integral.

Lemma 1.3.16. Let X and S be oriented manifolds, and let f : X → S be an
oriented submersion. Assume that all orientations are compatible: we assume that
the given orientation of X matches the orientation induced by the composition of
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the oriented submersions X f−→ S → {∗}. Then for all ω ∈ A∗
c(X) we have:∫

X

ω =

∫
S

∫
f

ω.

Proof. By the base change formula and Lemma 1.3.15 we may use partitions of
unity to reduce to the case where f is a projection of the form Rr ×Rn → Rn. In
this specific case the above identity follows from Fubini’s theorem.

As a corollary we obtain Theorem 1.2.8.

Proof of Theorem 1.2.8. Let α ∈ A∗
f (X). An application of Lemma 1.3.16 and the

projection formula then gives:

f∗[α] =

[∫
f

α

]
.

Proposition 1.3.17. Let f : X → Y and g : Y → S be oriented submer-
sions. Note that the composition gf : X → S can be endowed with a canonical
orientation. For each ω ∈ A∗

gf (X) we have:

ω ∈ A∗
f (X),

∫
f

ω ∈ A∗
g(Y ), and

∫
g

∫
f

ω =

∫
gf

ω.

Proof. Let K ⊆ Y be compact. Then

Suppω ∩ f−1(K) ⊆ Suppω ∩ (gf)−1(f [K])

is a closed subset of a compact set and hence compact. We find that ω ∈ A∗
f (X).

Similarly, for L ⊆ S compact, we see that

Supp

(∫
f

ω

)
∩ g−1(L) ⊆ f [Suppω] ∩ g−1(L) = f [Suppω ∩ (gf)−1(L)]

is a closed subset of a compact set and therefore compact, so
∫
f
ω ∈ A∗

g(X).
In order to prove the given identity, first assume that S is orientable, and fix

an orientation of S. Then the orientations of S, f , and g induce orientations of X
and Y . We have an equality of smooth currents:[∫

gf

ω

]
= (gf)∗[ω] = g∗(f∗[ω]) = g∗

[∫
f

ω

]
=

[∫
g

∫
f

ω

]
and hence an equality of the underlying differential forms.

If S is not orientable, denote by πS : S̃ → S its orientation double cover. Write
X̃ = X ×S S̃ and Ỹ = Y ×S S̃. We obtain a commutative diagram with cartesian
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squares:

X̃ Ỹ S̃

X Y S

f̃

πX □

g̃

πY □ πS

f g

and f̃ , g̃, and g̃f̃ are oriented submersions. We apply the base change formula,
and the fact that the proposition holds if the base is orientable:

π∗
S

∫
gf

ω =

∫
g̃f̃

π∗
Xω =

∫
g̃

∫
f̃

π∗
Xω =

∫
g̃

π∗
Y

∫
f

ω = π∗
S

∫
g

∫
f

ω.

As πS is a submersion, its associated pullback operator on differential forms is
injective, and the desired result follows.

Proposition 1.3.18 (Relative Stokes’ Theorem). Let f : X → S be an oriented
submersion whose nonempty fibers have dimension r. For each ω ∈ A∗

f (X) we
have: ∫

f

dω = (−1)rd

∫
f

ω.

Proof. Assume that S is orientable; picking an orientation of S yields an orien-
tation of X. Then we obtain the following equality of smooth currents for each
ω ∈ Apf (X):[∫

f

dω

]
= f∗[dω] = f∗d[ω] = (−1)rdf∗[ω] = (−1)rd

[∫
f

ω

]
=

[
(−1)rd

∫
f

ω

]
.

The underlying smooth forms on S are, therefore, equal.
By using orientation double covers as in the proof of Proposition 1.3.17 it is

possible to extend the proof to the case where S is not orientable.

1.3.4 The fiber integral along holomorphic submersions
In this section we will study the fiber integral in the setting where the manifolds
are complex and the submersion is a holomorphic map.

Assume that X and S are complex manifolds, and that f : X → S is a
holomorphic submersion. Recall that we have decompositions

A∗(X;C) =
⊕
p,q≥0

Ap,q(X) and A∗(S;C) =
⊕
p,q≥0

Ap,q(S).

The fiber integral
∫
f

respects these decompositions.

Proposition 1.3.19. Let f : X → S be a holomorphic submersion of complex
manifolds whose nonempty fibers have (complex) dimension r. For each (p, q)-form
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ω on X with proper support over S, the form
∫
f
ω is a (p− r, q − r)-form on S.

Proof. As ω is a (p, q)-form, the current [ω] is a (p, q)-current. By Proposition
1.2.9 the pushforward f∗[ω] is a (p − r, q − r)-current on S, and as f∗[ω] = [

∫
f
ω]

it follows that
∫
f
ω is a (p− r, q − r)-form.

A version of the relative Stokes’ Theorem 1.3.18 exists for the Dolbeault oper-
ators

∂ : Ap,q(X) → Ap+1,q(X) and ∂ : Ap,q(X) → Ap,q+1(X).

Proposition 1.3.20. Let f : X → S be a holomorphic submersion of complex
manifolds. For each smooth complex-valued form ω on X with proper support
over S the following identities hold:∫

f

∂ω = ∂

∫
f

ω and
∫
f

∂ω = ∂

∫
f

ω.

Proof. We may assume that ω is a form of type (p, q) for some p, q ≥ 0. Let
r denote the (complex) dimension of the nonempty fibers of f . By Proposition
1.3.18 we have ∫

f

∂ω +

∫
f

∂ω =

∫
f

dω = d

∫
f

ω = ∂

∫
f

ω + ∂

∫
f

ω.

It follows from Proposition 1.3.19 that
∫
f
∂ω and ∂

∫
f
ω are both (p+1− r, q− r)-

forms, whereas
∫
f
∂ω and ∂

∫
f
ω are both (p − r, q + 1 − r)-forms. The desired

equalities follow.

1.4 Hermitian line bundles on families of curves

In this section we will construct several line bundles that appear canonically on
families of genus g curves. Moreover we will equip these line bundles with canoni-
cal hermitian metrics. By using the Deligne pairing we will be able to exhibit some
canonical isometries between these hermitian line bundles. These canonical isome-
tries will be used in Chapter 4 to prove certain equalities in rings of tautological
differential forms.

1.4.1 The Poincaré bundle

In this section we will define the Poincaré bundle on families of complex tori. We
refer to [BL04], [BHdJ18] for more details.

Let T be a complex torus, and let T∨ = Pic0(T ) be its dual torus. A Poincaré
bundle on the product T × T∨ is a line bundle P that satisfies the following
properties:
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• For each class [L] ∈ T∨ = Pic0(T ) the pullback of P along the inclusion
T → T × T∨ : x 7→ (x, [L]) is isomorphic to L;

• The pullback of P along the zero section ν0 : T∨ → T × T∨ is trivial.

A Poincaré bundle always exists, and is unique up to isomorphism. A rigidified
Poincaré bundle is a Poincaré bundle P together with a rigidification, which is an
isomorphism ν∗0P

∼−→ OT∨ . A rigidified Poincaré bundle exists and is unique up
to a unique isomorphism.

Next, let f : T → S be a family of complex tori. We may construct the dual
family f∨ : T ∨ → S, whose fiber (T ∨)s above a point s ∈ S is the torus (Ts)∨ dual
to the torus Ts = f−1(s). The fiber product T ×S T ∨ admits a rigidified Poincaré
bundle P, which is a line bundle P together with an isomorphism ν∗0P

∼−→ OT ∨

with ν0 : T ∨ → T ×S T ∨ the zero section, such that for each s ∈ S the restriction
of P to the fiber (T ×S T ∨)s = Ts × T ∨

s is the rigidified Poincaré bundle on
that fiber. The rigidified Poincaré bundle on T ×S T ∨ is unique up to a unique
isomorphism.

Let f : C → S be a family of curves. Associated to the family f is the
Jacobian family J → S, which is a family of complex tori whose fiber over a
point s ∈ S is the Jacobian Jac(Cs) of the curve Cs = f−1(s). The canonical
principal polarizations of the fibers of the Jacobian family give rise to a morphism
λ : J → J ∨ of families over S. We will denote by Pλ the line bundle on J ×S J
obtained by pulling back the Poincaré bundle P along the morphism idJ ×λ :
J ×S J → J ×S J ∨. Moreover, pulling back Pλ along the diagonal morphism
J → J ×S J yields a line bundle on J , the canonical bundle on J , which we will
denote by B.

Recall the following: if T is a complex torus, and L is a line bundle on T , then
L induces a morphism

φL : T → T∨ : x 7→ [t∗xL⊗ L⊗−1] ∈ T∨ = Pic0(T ).

A line bundle L on the Jacobian J = Jac(C) is called polarizing if the associated
polarization φL : J → J∨ is a multiple of the canonical polarization λ : J → J∨.
Equivalently, L is polarizing if and only if its first Chern class is a multiple of the
Chern class c1(O(Θ)) of any theta divisor Θ on J .

Proposition 1.4.1. Let C be a curve. The canonical bundle B on the Jacobian
Jac(C) is polarizing.

We will use the following lemma.

Lemma 1.4.2. Let T be a complex torus, and let λ : T → T∨ be any homomor-
phism of complex tori. Let L be the pullback of the Poincaré bundle P along the
morphism (idT , λ) : T → T × T∨. Then we have an equality of homomorphisms

φL = λ+ λ∨ ◦ κ : T → T∨,

where κ : T → T∨∨ is the canonical isomorphism.
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Proof. It is a routine exercise to verify that the following diagram is commutative.

T T∨ T∨ × T

T × T∨ (T × T∨)∨ T∨ × T∨∨

(id,λ)

φL idT∨ +λ∨κ

idT∨ ×κ

φP

(id,λ)∨

∼

idT∨ +λ∨

Moreover, the composition

T × T∨ (T × T∨)∨ T∨ × T∨∨ T∨ × T
φP ∼ idT∨ ×κ−1

is the isomorphism T × T∨ → T∨ × T that swaps coordinates; see, for instance,
[BL04, Exercise 2.16]. The desired result now follows.

Proof of Proposition 1.4.1. Let Θ be any theta divisor on Jac(C), and let λ =
φO(Θ) be the canonical principal polarization of Jac(C). By Lemma 1.4.2 and
[BL04, Corollary 2.4.6(c)] we have:

φB = λ+ λ∨ ◦ κ = 2λ,

so c1(B) = 2c1(O(Θ)).

1.4.2 The Deligne pairing
This section serves to introduce the Deligne pairing, which is a pairing associated
to a family f : C → S of curves that maps a pair of line bundles on C to a line
bundle on S. The Deligne pairing will be used to construct isomorphisms between
line bundles that appear canonically on families of curves. We refer to [Del87],
[ACG11] for a more detailed treatment.

Let C be a curve. Suppose that f is a nonzero meromorphic function on C,
and let D =

∑
x∈C nx · x be a divisor of C such that div f and D are disjoint. We

then define
f [D] :=

∏
x∈C

f(x)nx ∈ C \ {0}.

To any two line bundles L,M on C we assign a vector space ⟨L,M⟩ as follows.
Denote by V the complex vector space whose basis consists of pairs (l,m), where l
and m are nonzero meromorphic sections of L and M respectively whose divisors
are disjoint. The vector space ⟨L,M⟩, then, is the quotient of V modulo the
subspace spanned by the relations

(fl,m)− f [divm] · (l,m) and (l, gm)− g[div l] · (l,m),

where f and g are meromorphic functions on C, such that div f and divm are
disjoint, and div g and div l are disjoint. The image of a pair (l,m) ∈ V under
the quotient map V → ⟨L,M⟩ is denoted by ⟨l,m⟩. Using Weil reciprocity one
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can show that ⟨L,M⟩ is a one-dimensional vector space. We call the vector space
⟨L,M⟩ the Deligne pairing of L and M .

We can generalize the Deligne pairing to families as follows. Assume that
f : C → S is a family of curves, and let L,M be holomorphic line bundles on
C. Then L and M induce a holomorphic line bundle ⟨L,M⟩f on S. The fiber of
⟨L,M⟩f at a point s ∈ S is the Deligne pairing ⟨Ls,Ms⟩ of the restrictions of L
and M to the curve Cs. If U ⊆ S is an open subset, and l and m are nonzero
meromorphic sections of L|f−1(U) and M |f−1(U) whose divisors are disjoint and do
not contain any of the fibers of f , then

⟨l,m⟩ : s 7→ ⟨l(s),m(s)⟩

is a generating section of ⟨L,M⟩f |U . We will often omit the subscript and write
⟨L,M⟩ instead of ⟨L,M⟩f if the morphism f is clear from the context.

For holomorphic line bundles L,L1, L2,M on C we have canonical isomorphisms

⟨L,M⟩ ∼−→ ⟨M,L⟩ : ⟨l,m⟩ 7→ ⟨m, l⟩
⟨L1,M⟩ ⊗ ⟨L2,M⟩ ∼−→ ⟨L1 ⊗ L2,M⟩ : ⟨l1,m⟩ ⊗ ⟨l2,m⟩ 7→ ⟨l1 ⊗ l2,m⟩

⟨OC ,M⟩ ∼−→ OS : ⟨1,m⟩ 7→ 1〈
L⊗−1,M

〉 ∼−→ ⟨L,M⟩⊗−1
:

〈
l⊗−1,m

〉
7→ ⟨l,m⟩⊗−1

where for every nonzero vector v in a one-dimensional vector space V the vector
v⊗−1 ∈ V ⊗−1 = V ∨ denotes the vector dual to v.

Isomorphisms L1
∼−→ L2 and M1

∼−→ M2 induce isomorphisms ⟨L1,M⟩ ∼−→
⟨L2,M⟩ and ⟨L,M1⟩

∼−→ ⟨L,M2⟩, respectively. If σ : S → C is a section of f , we
denote by O(σ) the line bundle on C associated to the divisor σ[S] ⊆ C. We have
a canonical isomorphism

⟨O(σ), L⟩ ∼−→ σ∗L : ⟨1, l⟩ 7→ σ∗l.

Moreover, suppose that the degree of the restriction of L to each fiber of f equals
d. Then for each line bundle N on S we have a canonical isomorphism

⟨L, f∗N⟩ ∼−→ N⊗d : ⟨l, f∗n⟩ 7→ n⊗d.

Finally, the Deligne pairing is well-behaved with respect to base change. More
precisely: if we have a cartesian diagram

C′ C

S′ S

f ′

h

□ f

g

where f (and hence f ′) is a family of curves, and L and M are line bundles on C,
then there is a canonical isomorphism

g∗⟨L,M⟩f
∼−→ ⟨h∗L, h∗M⟩f ′ .
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The Deligne pairing and the Poincaré bundle are related as follows. We say
that a line bundle L on C has relative degree 0 (with respect to f : C → S) if its
restriction to each fiber of f has degree 0. If L is a line bundle on C of relative
degree 0, then L induces a section [L] : S → J of the Jacobian family J → S.
The morphism [L] maps a point s ∈ S to the class of the restriction L|Cs in
Js = Jac(Cs).

Proposition 1.4.3 ([Mor85]). Let L and M be line bundles on C of relative
degree 0. Then there is a canonical isomorphism

⟨L,M⟩ ∼−→ ([L], [M ])∗P⊗−1
λ .

In particular, for any line bundle L on C with relative degree 0 one has a canonical
isomorphism

⟨L,L⟩ ≃ ([L], [L])∗P⊗−1
λ = [L]∗B⊗−1.

Let ω = ωC/S denote the relative holomorphic cotangent bundle of f . This is a
line bundle on C whose restriction to each fiber Cs is the sheaf Ω1

Cs of holomorphic
1-forms on Cs. It can be obtained as follows. Let T 1,0

C and T 1,0
S denote the

holomorphic tangent bundles of C and S. The tangent map df : T 1,0
C → f∗T 1,0

S is
surjective since f is a submersion, and its kernel is a line bundle T 1,0

C/S , the relative
holomorphic tangent bundle of f . Its dual is the line bundle ωC/S . In other words:
as f is a submersion, we can view the pullback f∗Ω1

S along f of the bundle Ω1
S

of holomorphic 1-forms as a subbundle of Ω1
C , and ωC/S is the quotient bundle

Ω1
X/f

∗Ω1
S . There is a canonical isomorphism of line bundles on C:

∆∗O(∆)
∼−→ ω⊗−1,

where ∆ : C → C ×S C is the diagonal morphism.
Consider the fiber product C2 = C ×S C and let p1, p2 : C2 → C be the two

projections. Notice that p1 and p2 are families of genus g curves. Consider the
following line bundle on C2:

O((2g − 2)∆)⊗ p∗2ω
⊗−1.

This line bundle has relative degree 0 with respect to p1 and hence induces a
morphism

κ := C → J : x 7→ [O((2g − 2)x)⊗ ω⊗−1] ∈ Jac(Cf(x)),

and by Proposition 1.4.3 there is a canonical isomorphism of line bundles on C:〈
O((2g − 2)∆)⊗ p∗2ω

⊗−1, O((2g − 2)∆)⊗ p∗2ω
⊗−1

〉
p1

∼−→ κ∗B⊗−1.

By the bilinearity of the Deligne pairing, the left hand side of this isomorphism is
canonically isomorphic to

⟨O(∆), O(∆)⟩⊗(2g−2)2

p1
⊗ ⟨O(∆), p∗2ω⟩

⊗−2(2g−2)
p1

⊗ ⟨p∗2ω, p∗2ω⟩p1 .
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Recall that there are canonical isomorphisms

⟨O(∆), O(∆)⟩p1
∼−→ ∆∗O(∆)

∼−→ ω⊗−1 and ⟨O(∆), p∗2ω⟩p1
∼−→ ∆∗p∗2ω = ω,

and as the Deligne pairing is well-behaved with respect to base change

⟨p∗2ω, p∗2ω⟩p1
∼−→ f∗⟨ω, ω⟩f .

By piecing all canonical isomorphisms together we obtain the following result.

Proposition 1.4.4. Let f : C → S be a family of curves, and let J → S be the
corresponding Jacobian family. Let κ : C → J be the morphism that maps a point
x ∈ Cs to the class [O((2g − 2)x) ⊗ ω⊗−1] ∈ Jac(Cs). Then we have a canonical
isomorphism

κ∗B⊗−1 ∼−→ ω⊗−2g(2g−2) ⊗ f∗⟨ω, ω⟩f .

Likewise, we may consider the two sections σ1, σ2 : C2 → C3 of the projection
p12 : C3 → C2 given by

σi : C2 → C3 : (x1, x2) 7→ (x1, x2, xi).

These sections induce a line bundle O(σ2 − σ1) = O(σ2) ⊗ O(σ1)
⊗−1 on C3 with

relative degree 0 with respect to p12. Analogous to Proposition 1.4.4 we obtain
the following identity.

Proposition 1.4.5. Let f : C → S be a family of curves, and let J → S be the
corresponding Jacobian family. Let δ : C2 → J denote the morphism that maps
a pair (x, y) ∈ C2

s to the class [O(y − x)] ∈ Jac(Cs). Then we have a canonical
isomorphism

δ∗B⊗−1 ∼−→ p∗1ω
⊗−1 ⊗ p∗2ω

⊗−1 ⊗O(∆)⊗−2.

By applying Proposition 1.4.5 we moreover obtain a canonical isomorphism〈
δ∗B⊗−1, δ∗B⊗−1

〉
p1

∼−→ ω⊗4g ⊗ f∗⟨ω, ω⟩f . (1.4.6)

Combining this canonical isomorphism with the one from 1.4.4 finally yields yet
another canonical isomorphism〈

δ∗B⊗−1, δ∗B⊗−1
〉
p1

⊗ κ∗B ∼−→ ω⊗4g2 . (1.4.7)

1.4.3 Hermitian metrics, first Chern form
Let X be a complex manifold, and let E be a holomorphic vector bundle on X. A
hermitian metric on E consists of a hermitian inner product ⟨·, ·⟩x on each fiber
Ex of E, such that these inner products vary smoothly with x ∈ X: if U ⊆ X is
open and σ, τ ∈ E(U) are sections, then the function

⟨σ, τ⟩ : U → C : x 7→ ⟨σ(x), τ(x)⟩x
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is smooth. A hermitian vector bundle is a vector bundle equipped with a hermitian
metric.

If σ is a holomorphic section of a hermitian vector bundle E, its norm is the
real-valued function ∥σ∥ on X given by

⟨σ⟩(x) = ⟨σ(x), σ(x)⟩1/2x .

Conversely, if L is a holomorphic line bundle on X, with a generating section σ,
and f : X → R>0 is a positive-valued smooth function, then there exists a unique
hermitian metric on L for which ∥σ∥ = f .

If V and W are two complex vector spaces with hermitian inner products ⟨·, ·⟩V
and ⟨·, ·⟩W , the tensor product V ⊗W has a canonical hermitian inner product
⟨·, ·⟩V⊗W given by

⟨v1 ⊗ w1, v2 ⊗ w2⟩V⊗W = ⟨v1, v2⟩V · ⟨w1, w2⟩W .

More generally, the tensor product of two hermitian vector bundles is canonically
a hermitian vector bundle.

Likewise, for any hermitian line bundle L on X, the dual line bundle L⊗−1 has
a unique hermitian metric for which the canonical isomorphism L⊗L⊗−1 ∼−→ OX
is an isometry, where OX is endowed with the canonical metric ∥1∥ = 1.

Let L be a line bundle on the complex manifold X with a hermitian metric
∥·∥. The first Chern form c1(L) is the differential (1, 1)-form on X defined locally
by

c1(L, ∥·∥) =
∂∂

2πi
log ∥σ∥2

where σ is any local generating section of L. As ∂∂ log |f | = 0 for every holo-
morphic function f , it follows that the first Chern form is well-defined. It is a
closed real differential form whose De Rham cohomology class matches the first
Chern class of the line bundle L under the isomorphism H2

dR(X)
∼−→ H2(X;R);

see [GH94, Chapter 1.1]. If the metric ∥·∥ is clear from the context we will often
omit it from our notation and write c1(L) instead of c1(L, ∥·∥).

The operator mapping a hermitian line bundle to its first Chern form is linear:
if L1, L2 are two hermitian line bundles on X, then

c1(L1 ⊗ L2) = c1(L1) + c1(L2) ∈ A2(X).

Theorem 1.4.8 (Poincaré–Lelong formula, [GH94, p. 388]). Let L be a hermitian
line bundle on a complex manifold X and let s be a meromorphic section of L.
Then we have an equality of 2-currents on X:

∂∂

π
√
−1

[log ∥s∥] + δdiv s = c1(L, ∥·∥).

Note that the Poincaré–Lelong formula is stated in [GH94] in a less general
setting, where L is assumed to be the trivial bundle with its canonical metric
∥1∥ = 1, and s is assumed to be a holomorphic function on X. By working locally
one easily deduces Theorem 1.4.8 from the version in [GH94].
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Lemma 1.4.9. Let C be a curve and let L be a hermitian line bundle on C. Then∫
C

c1(L) = degL.

Proof. Take any nonzero meromorphic section s of L. By using the Poincaré–
Lelong formula and evaluating the resulting 2-currents in the form 1 ∈ A0

c(C) we
obtain the desired result.

The Poincaré–Lelong formula implies the following lemma, which will be used
in Chapter 4.

Lemma 1.4.10. Let f : C → S be a family of curves, and let L be a hermitian line
bundle on C. Then the fiber integral of the 2-form c1(L) along f is the function
S → R given by (∫

f

c1(L)

)
(s) = degL|Cs for all s ∈ S.

In particular, the induced function
∫
f
c1(L) : S → Z : s 7→ degL|Cs is locally

constant.

Proof. As c1(L) is a smooth real 2-form and f is a proper submersion with fibers
of real dimension 2, the fiber integral

∫
f
c1(L) is a smooth function on S given by

(∫
f

c1(L)

)
(s) =

∫
Cs
c1(L)|Cs =

∫
Cs
c1(L|Cs) = degL|Cs ,

where the final equality follows from Lemma 1.4.9. This fiber integral is a smooth
integer-valued function, so it is in particular locally constant.

1.4.4 Admissible metrics

Line bundles on curves and complex tori admit many hermitian forms. In this
section we restrict our study to admissible hermitian metrics. We will follow
[Mor85].

Let T be a complex torus, and let L be a line bundle on T . A hermitian metric
on L is admissible if its first Chern form is translation-invariant. The admissible
metrics on OT are exactly the constant metrics. Every line bundle L admits
admissible metrics, and any two such metrics are equal up to a multiplicative
constant. If L1 and L2 are endowed with admissible metric, then the induced
metric on L1 ⊗L2 is admissible, too. If f : T ′ → T is a morphism of complex tori,
and L is a line bundle on T with an admissible metric, then the induced metric
on f∗L is admissible. See [Mor85, §3] for more details.
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Example 1.4.11. Let T be a complex torus, and let P be the rigidified Poincaré
bundle on the product torus T × T∨. Then any two admissible metrics on P
are equal up to a multiplicative constant. Fixing any admissible metric on P
induces an admissible, and hence constant, metric on OT∨ via the fixed isomor-
phism ν∗0P

∼−→ OT∨ . It follows that there exists a unique admissible metric on
P for which the fixed isomorphism ν∗0P

∼−→ OT∨ is an isometry if we endow OT∨

with the canonical metric ∥1∥ = 1. We call this metric the canonical metric on P.
More generally, if f : T → S is a family of complex tori, then there is a unique
hermitian metric on the rigidified Poincaré bundle P on T ×S T ∨ whose restriction
to each fiber Ts × T ∨

s above S is the canonical metric on the rigidified Poincaré
bundle on Ts ×T ∨

s . See [BHdJ18, Proposition 2.8]. This metric, too, is called the
canonical metric on P.
If f : C → S is a family of curves with Jacobian family J → S, then the canonical
metric on the Poincaré bundle P on J ×S J ∨ and the canonical principal polar-
ization λ : J → J ∨ induce canonical metrics on the line bundles Pλ = (id, λ)∗P
and B = ∆∗Pλ, and these metrics are fiberwise admissible.

Now let C be a curve of genus g > 0. The g-dimensional complex vector space
Ω1(X) of holomorphic 1-forms on C is endowed with an inner product

⟨ω, η⟩ =
√
−1

2

∫
C

ω ∧ η̄ for all ω, η ∈ Ω1(C).

Fix any orthonormal basis ω1, . . . , ωg of Ω1(C). The canonical 2-form of C is the
form

µ :=

√
−1

2g

g∑
i=1

ωi ∧ ω̄i.

The canonical 2-form is a real form that satisfies∫
C

µ = 1.

It does not depend on the choice of an orthonormal basis, and by the Riemann-
Roch theorem it is a volume form.

The canonical 2-form can also be obtained from the canonical metric on B as
follows: for x ∈ C any point we have

2gµ = c1(j
∗
xB) = j∗x(c1(B)),

with jx : C → J : y 7→ [O(y − x)] the Abel–Jacobi map. Note that the 2-form
j∗x(c1(B)) does not depend on the choice of x ∈ C, since c1(B) is translation-
invariant.

Let L be a line bundle on C. A hermitian metric ∥·∥ on L is admissible if its
first Chern form c1(L, ∥·∥) is a multiple of the canonical 2-form µ. Note that ∥·∥
is admissible if and only if c1(L, ∥·∥) = deg(L) ·µ, since

∫
C
c1(L, ∥·∥) = degL. The

admissible metrics on the trivial bundle OC are precisely the constant metrics. If
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L1, L2 are endowed with admissible metrics, then the induced metric on L1 ⊗ L2

is again admissible.
If x ∈ C is a point, and M is a polarizing line bundle on the Jacobian J =

Jac(C) with an admissible metric, then the induced metric on the pullback j∗xM
along the Abel–Jacobi morphism jx : C → J is again admissible.

Remark 1.4.12. If the genus of C equals 1, then we may view C both as a
curve and a complex torus via the Abel–Jacobi map, and we have two definitions
for admissible metrics on line bundles on C. As the canonical 2-form on C is
translation-invariant, these definitions agree.

1.4.5 Biadmissible metrics

Let C be a curve of genus g, and let L be a line bundle on the product C × C.
A hermitian metric on L is biadmissible if its restrictions to the fibers of the
projection maps p1, p2 : C × C → C are all admissible. Any two biadmissible
metrics on L are equal up to a positive multiplicative constant, and biadmissible
metrics are well-behaved with respect to tensor products. If M is a line bundle
on C with an admissible metric, then the induced metrics on p∗1M and p∗2M are
biadmissible.

Recall from Proposition 1.4.5 that we have a canonical isomorphism of line
bundles on C × C:

δ∗B ∼−→ p∗1ω ⊗ p∗2ω ⊗O(∆)⊗2.

As the canonical bundle B is polarizing, it is straightforward to verify that the
canonical metric on δ∗B is biadmissible. If ω is endowed with an admissible met-
ric, then the induced metrics on p∗1ω, p∗2ω are biadmissible, and the above isomor-
phism induces a biadmissible metric on O(∆)⊗2 and therefore on O(∆). Notice,
moreover, that this metric on O(∆) is symmetric. We thus obtain a canonical map

{admissible metrics on ω} → {biadmissible metrics on O(∆)}.

As this map is compatible with the free and transitive action of the multiplicative
group R>0 on both sets, it is a bijection. In order to find the inverse of this
bijection, notice that restricting the above isomorphism to the diagonal yields the
canonical isomorphism

OC ≃ ∆∗δ∗B ∼−→ ω⊗2 ⊗∆∗O(∆)⊗2,

and the induced metric on OC ≃ ∆∗δ∗B is the canonical metric ∥1∥ = 1. Every
biadmissible metric on O(∆), therefore, induces an admissible metric on ω via the
canonical isomorphism ∆∗O(∆)

∼−→ ω⊗−1.
Let ∥·∥ be any biadmissible metric on O(∆). Taking the norm of the canonical

global section 1 of O(∆) yields a function G = ∥1∥ : C × C → R≥0. The function
G has the following properties:
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1. G is smooth and positive-valued outside the diagonal, and vanishes on the
diagonal. If z is a local coordinate on an open U ⊆ C, then on U × U the
function G can be expressed as

G(x, y) = |z(x)− z(y)| · u(x, y)

with u a smooth and positive-valued function on U × U .
2. G is symmetric: G(x, y) = G(y, x) for all x, y ∈ C.
3. For each point x ∈ X we have an equality of 2-currents on C:

∂∂

π
√
−1

[logG(x, ·)] = µ− δx,

by the Poincaré–Lelong formula.

Conversely, every function G : C × C → R≥0 that satisfies these properties deter-
mines a biadmissible metric on O(∆). According to Arakelov [Ara74] the function

C → R : x 7→
∫
y∈C

logG(x, y)µ(y)

is constant. The Arakelov–Green function G is the unique function that satisfies
the above properties and the normalizing condition∫

y∈C
logG(x, y)µ(y) = 0 for all x ∈ X.

We will call the biadmissible metric on O(∆) it determines the canonical metric
on O(∆). The canonical metric on O(∆) determines an admissible metric on ω via
the canonical isomorphism ∆∗O(∆)

∼−→ ω⊗−1, which we will also call the canonical
metric on ω.

Finally, if x ∈ C is any point, restricting the canonical metric on O(∆) to the
fiber C × {x} yields an admissible metric on the line bundle O(x), given by

∥1∥(y) = G(x, y).

We call this metric the canonical metric on O(x). More generally, for D =
∑
x nxx

a divisor on C, we obtain a canonical metric on the line bundle O(D) via the
canonical isomorphism ⊗

x∈X
O(x)⊗nx

∼−→ O(D).

1.4.6 Canonical isometries
Let C be a curve with Jacobian J . We have defined canonical metrics on the line
bundles B on J , O(∆) on C × C, and ω and O(D) (with D a divisor) on C. In
this section we will show that the canonical isomorphisms we obtained in Section
1.4.2 are in fact isometries. The canonical isomorphism

δ∗B ∼−→ p∗1ω ⊗ p∗2ω ⊗O(∆)⊗2
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is an isometry by construction of the metrics on ω and O(∆). For the other
isomorphisms we will be using the Deligne pairing.

Let L,M be hermitian line bundles on C. To the hermitian metrics on L,M
we associate a norm on the vector space ⟨L,M⟩:

log ∥⟨l,m⟩∥ := (log ∥m∥)[div(l)] + [log ∥l∥](c1(M))

= (log ∥l∥)[div(m)] + [log ∥m∥](c1(L)),

where the second equality can be proved using Stokes’ theorem.
More generally, let f : C → S be a family of curves, and let L,M be hermitian

line bundles on C. The induced metrics on the fibers of the Deligne pairing ⟨L,M⟩
induce a hermitian metric on ⟨L,M⟩. See also [Del87, §6].

For hermitian line bundles L,L1, L2,M on C the canonical isomorphisms

⟨L,M⟩ ∼−→ ⟨M,L⟩
⟨L1,M⟩ ⊗ ⟨L2,M⟩ ∼−→ ⟨L1 ⊗ L2,M⟩

⟨OC ,M⟩ ∼−→ OS〈
L⊗−1,M

〉 ∼−→ ⟨L,M⟩⊗−1

are isometries, where OC and OS are endowed with the canonical metrics given by
∥1∥ = 1.

Likewise, if N is a hermitian line bundle on S, and L a hermitian line bundle on
C whose restriction to each fiber of f has degree d, then the canonical isomorphism

⟨L, f∗N⟩ ∼−→ N⊗d

is an isometry.
If we have a cartesian diagram

C′ C

S′ S

f ′

h

□ f

g

where f and f ′ are families of curves, and L and M are hermitian line bundles on
C, then the canonical isomorphism

g∗⟨L,M⟩f
∼−→ ⟨h∗L, h∗M⟩f ′

is an isometry.

Proposition 1.4.13 ([Del87, §6]). For any two hermitian line bundles L,M on
C we have

c1(⟨L,M⟩) =
∫
f

c1(L) ∧ c1(M).
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Proposition 1.4.14 ([HdJ15, Corollary 4.2]). Let L and M be line bundles on C
of relative degree 0. Then the canonical isomorphism

⟨L,M⟩ ∼−→ ([L], [M ])∗P⊗−1
λ

from Proposition 1.4.3 is an isometry.

Finally, assume that C is a curve, let x ∈ C be a point, and endow O(x) with
its canonical metric. Then for each admissible line bundle M on C the canonical
isomorphism

⟨O(x),M⟩ ∼−→Mx

is easily seen to be an isometry. Likewise, if we equip the diagonal bundle O(∆) on
C ×C with its canonical metric, and if M is a line bundle on C whose restriction
to each fiber of p1 is admissible, then the canonical isomorphism

⟨O(∆),M⟩ ∼−→ ∆∗M

is an isometry. Later in this section we will generalize this statement to include
arbitrary sections of families of curves.

From the above canonical isometries involving the Deligne pairing and the
computations of the canonical isomorphisms 1.4.4, 1.4.6, and 1.4.7, we deduce the
following result.

Proposition 1.4.15. Let C be a curve with Jacobian J , and endow the line
bundles O(∆) on C × C, ω on C, and B on J with their canonical metrics. Then
the canonical isomorphisms

κ∗B⊗−1 ∼−→ ω⊗−2g(2g−2) ⊗ f∗⟨ω, ω⟩f
δ∗B⊗−1 ∼−→ p∗1ω

⊗−1 ⊗ p∗2ω
⊗−1 ⊗O(∆)⊗−2〈

δ∗B⊗−1, δ∗B⊗−1
〉
p1

∼−→ ω4g ⊗ f∗⟨ω, ω⟩f〈
δ∗B⊗−1, δ∗B⊗−1

〉
p1

⊗ κ∗B ∼−→ ω⊗4g2

are isometries.

Notice that, in particular, the canonical metric on ω can be obtained from the
canonical metric on B by taking pullbacks along δ and κ and Deligne pairings
along p1.

Corollary 1.4.16. Let f : C → S be a family of curves, and consider the relative
dualizing sheaf ω = ωC/S on C and the diagonal bundle O(∆) on C ×S C.
There exists a unique fiberwise admissible hermitian metric on ω whose restriction
to each fiber Cs of f is the canonical metric on ω|Cs = ωC .
Likewise, there exists a unique fiberwise biadmissible hermitian metric on O(∆)
whose restriction to each fiber (C ×S C)s = Cs × Cs of the morphism C ×S C → S
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is the canonical metric on the diagonal bundle on Cs × Cs.

As the reader may already expect, we will call these metrics on ω and O(∆)
the canonical metrics.

Proof. Let J → S be the Jacobian family of f , and let B be the Poincaré bundle
on J with its canonical metric. The canonical isomorphism〈

δ∗B⊗−1, δ∗B⊗−1
〉
p1

⊗ κ∗B ∼−→ ω⊗4g2

then defines a hermitian metric on ω⊗4g2 , and hence on ω. By Proposition 1.4.15
the restriction of this hermitian metric to each fiber Cs of f is equal to the canonical
metric on ωCs .

Likewise, the hermitian metrics on B and ω determine a hermitian metric on
O(∆) via the canonical isomorphism

δ∗B⊗−1 ∼−→ p∗1ω
⊗−1 ⊗ p∗2ω

⊗−1 ⊗O(∆)⊗−2,

and Proposition 1.4.15 ensures that the restriction of this metric to each fiber is
indeed the canonical metric.

Let f : C → S be a family of curves, and let σ : S → C be a section. We will
endow the line bundle O(σ) = O(σ[S]) on C with a canonical metric, as follows.
Both squares in the following diagram are cartesian:

S C

C C ×S C

S C

σ

σ

□ ∆

f

(σf,idC)

□ p1

σ

We therefore have a canonical isomorphism

O(σ)
∼−→ (σf, idC)

∗O(∆),

and the canonical metric on O(∆) canonically induces a metric on O(σ), which
we will call the canonical metric. Notice that for each point s ∈ S restricting
the line bundle O(σ) on C to the fiber Cs yields the line bundle O(σ(s)) with its
canonical metric. Moreover, if M is a line bundle on C with a hermitian metric
that is fiberwise (with respect to f) admissible, then the canonical isomorphism

⟨O(σ),M⟩ ∼−→ σ∗M

is an isometry.
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Chapter 2

The moduli space of genus g
curves

Moduli spaces can be thought of as spaces that parametrize objects of a certain
type. For example, if V is a complex vector space and k ≥ 0 an integer, the
Grassmannian Gk,V is a complex manifold whose underlying set is the set of k-
dimensional linear subspaces of V , so Gk,V parametrizes k-linear subspaces of
V . There is a universal vector bundle Ek,V → Gk,V that induces every other
family of k-dimensional subspaces via base change. By studying this universal
family we can make statements that are valid ‘universally’ among families of k-
dimensional subspaces of V . In Section 2.1 we will see which cohomology classes
occur universally among such families.

This thesis is aimed at the moduli space Mg of compact Riemann surfaces of
genus g ≥ 2 and the universal family Cg → Mg. Unfortunately, such a fine moduli
space does not exist in the category of complex manifolds. In Section 2.2 we will
see why the existence of nontrivial automorphisms on genus g curves prevents the
existence of a fine moduli space for genus g curves.

Riemann surfaces were first studied by Riemann [Rie51; Rie57] in the context of
multi-valued functions on the complex plane. Riemann already knew heuristically
that a compact Riemann surface of genus g ≥ 2 depends on 3g − 3 parameters,
or in a more modern terminology, that the moduli space Mg should be (3g − 3)-
dimensional. Teichmüller [Tei44] made this statement more formal. He realized
that it is impossible to endow the moduli space of genus g curves Mg with a well-
behaved complex structure, as this space has certain singularities. He therefore
constructed a covering Tg of Mg whose points are isomorphism classes of genus g
curves with Teichmüller structure, and endowed this space with the structure of
a complex manifold. Moreover, Teichmüller constructed a family Xg → Tg that
is universal in the sense that any other family of genus g curves with Teichmüller
structure can be obtained from this universal family by base change. He remarked
that the complex manifold Tg is (3g − 3)-dimensional, and hence gave a formal
meaning to Riemann’s heuristic argument.

In a series of 10 talks at Henri Cartan’s seminar, Grothendieck [Gro60] refor-
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mulated Teichmüller’s results in a language of algebraic geometry. More precisely,
he proved that the functor from complex analytic spaces to sets mapping a com-
plex analytic space S to the set of isomorphism classes of families of genus g curves
with Teichmüller structure over S is representable by the Teichmüller space Tg.
This means that Tg is the fine moduli space for families of genus g curves with
Teichmüller structure. In Section 2.3 we will discuss the Teichmüller space Tg.

Another approach at tackling the moduli space Mg was made by Deligne and
Mumford [DM69]. They view Mg as a stack, rather than a complex manifold.
This is the approach we will also be taking in this thesis. This approach will give
us a moduli space Mg and a universal family Cg → Mg. Although these are not
honest complex manifolds, some theory about complex manifolds generalizes to
stacks. For example, it is still possible to define differential forms and hermitian
line bundles on stacks, which we will do in Sections 2.5 and 2.6.

As it turns out, it is possible to understand these differential forms and her-
mitian vector bundles without understanding much about the underlying stacks
at all. Any reader who is not comfortable with (or interested in) using stacks
can read Section 2.1 for a motivation, and afterwards read Proposition 2.5.10 and
Example 2.6.1 to get some intuition for working with differential forms and vector
bundles on moduli stacks.

In Chapter 4 we will often treat Mg and Cg as if they were honest complex
manifolds. In such cases, the reader should understand that there is an argument
being made ‘behind the scenes’: the given statements hold universally for families
of genus g curves, and hence on the moduli stacks themselves.

In this section we will be working over the category CMan of complex man-
ifolds. We also fix a Grothendieck topology on CMan, where a collection of
morphisms {Xi → X} is a covering if and only if all these morphisms are open
immersions and their images cover X. It now makes sense to talk about stacks
over CMan. In this entire section every stack is assumed to be over CMan, so
we will often abbreviate ‘stack over CMan’ to ‘stack’.

2.1 Motivating example: the Grassmannian man-
ifold

To motivate our study of families and moduli spaces of curves, we first look at a
simpler and better understood example of a moduli space, the Grassmannian. We
will see that studying moduli spaces can yield information on properties that hold
universally on the families they classify. We refer to [BT82, §23] and [GH94, §1.5]
for a more detailed treatment of the material in this section.

Definition 2.1.1. Let V be a complex vector space. A family of k-dimensional
subspaces of V over a complex manifold S is a holomorphic sub-vector bundle
f : E → S of the trivial vector bundle V × S → S, such that every fiber of f is
k-dimensional.

For instance, consider the complex manifold S = PnC whose points correspond
to lines through the origin in Cn+1. Let E → S be the subbundle of Cn+1×S → S
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whose fiber over a point s ∈ S is the line in Cn+1 that corresponds to s. Then
E → S is a family of one-dimensional subspaces of Cn+1.

More generally, for all k ≥ 0 and all complex vector spaces V , we can consider
the Grassmannian manifold Gk,V . Its underlying set is the set of k-dimensional
subspaces of V :

|Gk,V | = {W ⊆ V : dim(W ) = k}
For example, the Grassmannian G1,Cn+1 is the projective space PnC. Recall that
the complex structure on PnC is constructed by gluing affine charts; the complex
structure on general Grassmannians is constructed in a similar way.

The Grassmannian Gk,V comes with a canonical family of k-dimensional sub-
spaces of V . It is the subbundle u : Ek,V → Gk,V of the trivial bundle V ×Gk,V →
Gk,V whose fiber over a point in Gk,V equals the corresponding k-dimensional sub-
space of V .

Now let us assume that f : E → S is any family of k-dimensional subspaces.
Then associated to f we have a morphism Φf : S → Gk,V , which maps any point
s ∈ S to the fiber Es ∈ Gk,V . Moreover, the bundle E → S is the pullback of the
canonical bundle Ek,V → Gk,V along the morphism Φf :

E Ek,V

S Gk,V .

f □ u

Φf

It follows that the family u : Ek,V → Gk,V induces every other family f : E → S
by pullback along a unique morphism Φf : S → Gk,V . We therefore call u :
Ek,V → Gk,V the universal family of k-dimensional subspaces of V . We say that
Gk,V is a fine moduli space for k-dimensional subspaces of V .

Suppose that f : E → S is any family of k-dimensional subspaces of V . Asso-
ciated to f we have some cohomology classes on S, the Chern classes

c1(E), . . . , ck(E) ∈ H∗(S).

Moreover, we have a vector bundleQ over S defined by the following exact sequence

0 → E → V × S → Q→ 0.

Associated to Q we have some more cohomology classes on S:

c1(Q), . . . , cn−k(Q) ∈ H∗(S),

where n = dim(V ). These classes have the following relation:

(1 + c1(E) + · · ·+ ck(E))(1 + c1(Q) + · · ·+ cn−k(Q)) = 1.

Moreover, these cohomology classes behave well with respect to base change: if
g : T → S is any morphism, and g∗E → T is the pullback of E → S along g, then
g∗Q→ T is the quotient bundle associated to g∗E → T , and we have equalities

ci(g
∗E) = g∗ci(E) and ci(g

∗Q) = g∗ci(Q).
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In particular we have for each family f : E → S of k-dimensional subspaces of V
equalities of Chern classes

c1(E) = Φ∗
fc1(Ek,V ) and c1(Q) = Φ∗

fc1(Qk,V ),

where Qk,V is the universal quotient bundle on Gk,V defined by the exact sequence

0 → Ek,V → V ×Gk,V → Qk,V → 0.

It follows that these Chern classes are in some sense universal on families of
subspaces, and the relation we found among them is a universal relation. One
might wonder if there are any more such universal classes or relations on families
of subspaces. We can answer this question by studying the cohomology ring of
the Grassmannian. Indeed, any cohomology class on the Grassmannian yields a
cohomology class on the base of every family of subspaces f : E → S via pullback
along Φf . Conversely, every universal class on bases of families of subspaces gives
in particular a class on the base of the bundle u : Ek,V → Gk,V . The cohomology
of the Grassmannian is

H∗(Gk,V ) =
Z[c1(E), . . . , ck(E), c1(Q), . . . , cn−k(Q)]

((1 + c1(E) + · · ·+ ck(E))(1 + c1(Q) + · · ·+ cn−k(Q))− 1)
,

where E = Ek,V and Q = Qk,V is the associated quotient bundle. In particular, it
follows that there are no further cohomology classes or relations that are universal
on families of subspaces.

Similarly, we can study other types of objects, such as Chow classes or differ-
ential forms, that are universal on families of subspaces simply by studying these
objects on the Grassmannian.

The main takeaway from this section is the following.

Making statements about (objects on) moduli spaces is equivalent to
making statements that hold universally among the families these mod-
uli spaces classify.

2.2 Fine moduli spaces
In Section 2.1 we constructed the Grassmannian Gk,V that parametrizes k-dimen-
sional subspaces of a complex vector space V , together with a universal family
u : Ek,V → Gk,V that induces every other family of k-dimensional subspaces of V
via base change. We called Gk,V a fine moduli space for families of k-dimensional
subspaces of V . In this section we will generalize this discussion. We will start
with some abstract nonsense, and then apply this to some concrete examples, such
as the Grassmannian we studied in Section 2.1.

Definition 2.2.1. Let C be a category, let Set denote the category of sets, and
let F : C → Set be a contravariant functor. A representation of F consists of an
object M of C together with a natural isomorphism τ from F to the functor of
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points M(−) = HomC(−,M). In this case, we say that M is a fine moduli space
for F .

It follows from Yoneda’s lemma that a representation is unique up to a unique
isomorphism. In particular a fine moduli space is unique up to isomorphism.

Assume that F is representable, and fix a representation τ : F
∼−→ M(−).

Then under the bijection τM : F (M)
∼−→ M(M), the identity idM : M → M

corresponds to an element u ∈ F (M). We call this element the universal element.
Let α : S → M be a morphism. We obtain a commutative diagram of sets:

F (M) M(M)

F (S) M(S),

α∗

τM
∼

−◦α

τS
∼

where we denote by α∗ the map F (α) : F (M) → F (S) induced by α : S → M. By
chasing through this diagram we find that τS(α∗u) = α. In particular, for every
f ∈ F (S) there exists a unique morphism Φf : S → M (namely Φf = τS(f))
for which Φ∗

fu = f . In other words: for every object S of C and every element
f ∈ F (S) we can obtain f from the universal element u by pulling u back along a
unique morphism Φf : S → M.

For example, let k be a nonnegative integer, and let V be a complex vector
space. Consider the following contravariant functor from the category of complex
manifolds to the category of sets:

F : CMan → Set

S 7→ {families E → S of k-dimensional subspaces of V }.

A morphism of complex manifolds T → S is mapped to the pullback operator that
transforms families over S into families over T . We claim that the Grassmannian
Gk,V is a fine moduli space for F . Indeed, for any complex manifold S we define
a map

τS : F (S) → Gk,V (S) = Hom(S,Gk,V )

that sends a family f : E → S to the morphism Φf : S → Gk,V given by Φf (s) =
f−1(s) ⊆ V for all s ∈ S. Notice that τS is in fact a bijection. The maps τS induce
a natural isomorphism τ : F → Gk,V (−).

The universal element of the functor F is the universal family u : Ek,V → Gk,V .
Indeed, under the bijection τGk,V : F (Gk,V ) → Gk,V (Gk,V ) this family is mapped
to the identity Gk,V → Gk,V . It follows once again that every family E → S of
k-dimensional subspaces of V can be obtained from the universal family by taking
its pullback along a unique morphism Φf : S → Gk,V .

Analogous to the Grassmannian we would like to construct a moduli space
Mg that classifies genus g curves for a fixed integer g ≥ 0. As there are too many
genus g curves to fit into a set, we cannot expect the points of Mg to correspond
bijectively with genus g curves. Our next best bet is to try to construct a moduli
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space Mg whose points correspond to isomorphism classes of genus g curves. We
proceed as follows.

Two families f : X → S and f ′ : X ′ → S are isomorphic if there exists an
isomorphism g : X → X ′ with f ′ ◦ g = f . We can then consider the following
functor:

F : CMan → Set

S 7→ {families X → S of genus g curves}/ ∼= .

Let us assume that F is representable by a complex manifold Mg. Under the
bijection F (Mg)

∼−→ Mg(Mg) the identity Mg → Mg corresponds to a universal
family p : Cg → Mg of genus g curves. The bijection F (∗) ∼−→ Mg(∗) gives us
a bijective correspondence between the points of Mg and isomorphism classes of
genus g curves. If f : X → S is a family of genus g curves, then the associated
morphism Φf : S → Mg maps a point s ∈ S to the point of Mg that corresponds
to the isomorphism class of the curve Xs, and we obtain a cartesian diagram

X Cg

S Mg.

f □ p

Φf

Now let f : X → S be an isotrivial family of genus g curves. That is, the fibers of
f are pairwise isomorphic. Then the induced morphism Φf : S → Mg is constant,
and factors over the singleton manifold. We obtain the following diagram with
cartesian squares:

X C Cg

S {∗} Mg

f □ □ p

Φf

where C is a genus g curve that is isomorphic to the fibers of f . We therefore see
that f is a trivial family: it is isomorphic to the family C × S → S.

So the existence of a moduli space of genus g curves would imply that every
isotrivial family of genus g curves is trivial. However, as the next proposition
states, it is possible to construct nontrivial isotrivial families, and thus show that
a fine moduli space Mg cannot exist.

Proposition 2.2.2. Let g ≥ 0 be an integer. There exists an isotrivial family
of genus g curves which is not trivial. In particular, there is no fine moduli space
Mg of genus g curves in the category of complex manifolds.

Let us first prove this proposition in the case g = 0.

Proof for g = 0. First, assume that g = 0. Consider the projective plane P2 and
fix a point x ∈ P2, and blow up the plane at this point. In other words, the set S
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of lines through x can be identified with P1 and hence be given the structure of a
complex manifold, and we consider the complex manifold

X = {(y, ℓ) ∈ P2 × S : y ∈ ℓ}.

The morphism f : X → S : (y, ℓ) 7→ ℓ is an isotrivial family of genus 0 curves:
we have f−1(ℓ) ∼= ℓ ∼= P1 for all ℓ ∈ S. However, we claim that f is not a trivial
family. If it were, it would have to be isomorphic to P1 × S ∼= P1 × P1. One
can show, for instance by using intersection theory, that this is not the case. The
exceptional locus

E = {(x, ℓ) : ℓ ∈ S} ⊆ X

is a prime divisor of X with self-intersection −1 ([Har77, Proposition V.3.1]),
whereas P1×P1 can be shown not to have any such prime divisors ([Har77, Example
V.1.4.3]).

For genus g > 0 we can construct nontrivial isotrivial families by taking a
genus g curve C with a nontrivial automorphism and using this automorphism to
‘twist’ C. Compare this to the construction of the Möbius strip by twisting a line
segment onto itself. We will finish the proof of this proposition in the next section.

2.3 Mapping class groups and Teichmüller struc-
tures

In this section we will prove Proposition 2.2.2, proving that there is no fine moduli
space for genus g curves. The problem here is that genus g curves admit ‘too
many’ automorphisms, allowing us to twist trivial families into nontrivial isotriv-
ial families. Teichmüller [Tei44] realized this and added extra structures (which
we now call Teichmüller structures) to the curves we are trying to classify. He
thus obtained a universal family Xg → Tg of genus g curves with Teichmüller
structures. Grothendieck [Gro60] was able to rephrase Teichmüller’s results in a
language of algebraic geometry. We will first discuss the results from Teichmüller
and Grothendieck, and finish the section by proving that a fine moduli space Mg

does not exist in the category of complex manifolds.
For a more detailed treatment of the material in this section we refer to

Grothendieck [Gro60]; see also [AJP16] for a survey of Grothendieck’s work on
Teichmüller theory.

If X ′, X are two topological spaces, we denote by I(X ′, X) the set of home-
omorphisms X ′ → X modulo homotopy. If X ′ = X then composition induces a
group structure on I(X,X); the resulting group is called the mapping class group
of X and denoted MCG(X). In general MCG(X) acts from the left1 on I(X ′, X)
by composition.

1In fact, Grothendieck considers the right action of MCG(X) on I(X,X′). In the proof of
Lemma 2.3.1 we will be using the left action of the mapping class group to construct a monodromy
representation. As taking inverses yields a bijective correspondence between left and right actions
we lose no information if we consider left actions instead.
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Assume, now, that f : X → S is a fiber bundle whose fiber F is a finite
simplicial complex. The disjoint union of sets⊔

s∈S
I(Xs, F )

has a natural structure of a MCG(F )-covering space over S. We denote this
topological space by R(X/S). For fixed F and S the assignment X 7→ R(X/S)
is functorial. Moreover it is compatible with base changes of fiber bundles: for a
continuous map T → S we have

R(X ×S T/T ) = R(X/S)×S T.

Similarly, if F is a compact connected oriented manifold, then we can consider
the group MCG+(F ) of F consisting of homotopy classes of orientation-preserving
homeomorphisms F → F , which is a subgroup of MCG(F ) of index at most 2. In
this context the group MCG(F ) is often called the extended mapping class group
of F , and MCG+(F ) is the mapping class group of F . If X → S is an oriented
fiber bundle with fiber F , then analogous to the MCG(F )-covering R(X/S) of
S we construct an MCG+(F )-covering P(X/S) of S, whose fiber over a point
s ∈ S consists of the homotopy classes of orientation-preserving homeomorphisms
Xs → F .

In particular, if f : C → S is a family of genus g curves, then f is also a fiber
bundle whose fiber is the compact oriented surface Σg of genus g, and Grothendieck
calls the MCG+(Σg)-covering P(C/S) → S the Teichmüller covering of S. The
topological space P(C/S) obtains the structure of a complex manifold: it is the
unique structure for which P(C/S) → S is locally an isomorphism. A Teichmüller
structure on the family f is a section of the Teichmüller covering P(C/S) → S. In
other words: giving a Teichmüller structure on f is equivalent to giving a homotopy
class of a homeomorphism Σg

∼−→ Cs for each s ∈ S, such that these classes ‘vary
continuously’ with s.

Adding Teichmüller structures rigidifies the genus g curves we are working
with. More precisely: families of genus g curves with Teichmüller structure do not
admit nontrivial automorphisms. From this Grothendieck then deduces that the
functor

S 7→ {families of genus g curves f : C → S with Teichmüller structure}/ ∼=

is representable. Let Tg be a representing object; we hence obtain a universal
family Xg → Tg of genus g curves with Teichmüller structure. Grothendieck,
moreover, remarks that Tg is homeomorphic to a ball.

Notice, moreover, that there is a natural action of the mapping class group
Γg = MCG+(Σg) on the Teichmüller space Tg. The set of orbits of this action is
in bijective correspondence with the set of isomorphism classes of genus g curves.
We may therefore view the quotient Mg = Tg/Γg as the moduli space of genus
g curves. The quotient Mg, however, does not obtain the structure of a complex
manifold.
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In the remainder of this section we will finish the proof of Proposition 2.2.2.
We will be using the following lemma to construct an nontrivial isotrivial family
of genus g curves.

Lemma 2.3.1. Let Y and F be topological spaces, and let G be a discrete group.
Assume that G acts from the left on Y and F , and assume moreover that the
action of G on Y is a covering space action (as defined in [Ful95, Section 1.3]).
Note that the actions of G on Y and F induce a G-action on Y × F . Define
S = Y/G and X = (Y × F )/G. Then the quotient map p : Y → S is a covering,
and the induced map

f : X → S

is a fiber bundle with fiber F . If, moreover, Y is path-connected and the homo-
morphism G → MCG(F ) induced by the G-action on F is nontrivial, then the
fiber bundle f is nontrivial.

Proof. As the action of G on Y is a covering space action, the quotient map
Y → Y/G = S is a covering map. Moreover, it is straightforward to prove that f
is a fiber bundle with fiber F .

Fix points y ∈ Y , z ∈ F , and set s = p(y) and let x ∈ X be the image of (y, z)
under the quotient map Y × F → X. Note that the composition

F
∼−→ {y} × F ↪→ Y × F ↠ X

induces a homeomorphism F
∼−→ Xs = f−1(s); we denote the inverse of this

homeomorphism by φ : Xs
∼−→ F .

The monodromy representation of the pointed G-covering p : (Y, y) → (S, s)
induces a homomorphism

ρ : π1(S, s) → G

(c.f. [Ful95, §14a]); it is uniquely determined by the property that ρ(α) · y = y ∗α,
where ∗ denotes the monodromy right action of π1(S, s) on the fiber Ys.

Likewise, the fiber bundle f induces a MCG(F )-covering R(X/S) → S. The
homeomorphism φ induces a point in R(X/S) over s, and the monodromy repre-
sentation yields a homomorphism

ρ′ : π1(S, s) → MCG(F ).

It is now a routine exercise to prove that these two monodromy representations
are compatible in the following sense. The action of G on F induces a homomor-
phism G→ MCG(F ), and the following diagram is commutative:

π1(S, s) G

MCG(F )

ρ′

ρ

Assume that f is a trivial fiber bundle. Then R(X/S) → S is a trivial covering,
and the monodromy representation π1(S, s) → MCG(F ) is trivial. If moreover Y
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is path-connected then the monodromy representation π1(S, s) → G is surjective,
which implies that the homomorphism G→ MCG(F ) must be trivial.

Proof of Proposition 2.2.2 with g > 0. Assume that g > 0. Let C denote the (hy-
per)elliptic curve of genus g given by the equation

y2 =

2g+1∏
λ=0

(x− λ).

Consider the involution σ : C → C given by (x, y) 7→ (x,−y). Note that σ induces
a Z-action on C:

Z → Aut(C) : 1 7→ σ

and hence a homomorphism Z → MCG(C) that maps 1 to the class of σ. We
claim that the class [σ] ∈ MCG(C) is nontrivial. In that case, we can consider the
Z-covering

f : C → C× : z 7→ exp(2πiz),

and use Lemma 2.3.1 to construct a nontrivial isotrivial family of genus g curves
with fiber C, finishing the proof of Proposition 2.2.2. Note that since f and σ are
holomorphic the family obtained from 2.3.1 is a holomorphic fiber bundle.

The involution σ acts as multiplication with −1 on the first (singular) homology
group H1(C) ∼= Z2g. Indeed, the group H1(C) is generated by classes of the form
[γ1 − γ2], where γ1, γ2 are the two lifts of a path in P1 between two branch points
of the morphism C → P1 : (x, y) 7→ x. The involution σ, then, permutes γ1 and
γ2, and therefore acts as multiplication by −1 on these classes and hence the whole
group. In particular the action of σ on H1(C) is nontrivial. The automorphism
σ, therefore, is not homotopic to the identity idC , and its class in MCG(C) is
nontrivial.

2.4 Stacks
As we have seen in Section 2.2 there is no fine moduli space for genus g curves.
The reason is the existence of nontrivial automorphisms that we can exploit to
‘twist’ trivial families into nontrivial isotrivial families. This is a common reason
for nonexistence of a fine moduli space for many types of families. We can fix the
problem in multiple ways.

One way is to impose extra structure on the objects we classify, as we have
seen in Section 2.3. Adding Teichmüller structures to our curves annihilates any
nontrivial automorphisms, and a fine moduli space for curves with Teichmüller
structure exists.

Another way to circumvent the nonexistence of a fine moduli space for genus g
curves is by enlarging our category of complex manifolds by introducing stacks over
the category of complex manifolds, as was done by Deligne and Mumford [DM69].
For an introduction to stacks we refer to [Fan01], a more thorough treatment is
given in [FGI+05]. We also refer to [BX11] and [Hei05] for a treatment of stacks
in the context of manifolds.
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2.4. Stacks

Roughly speaking, a stack (over CMan) is a category M equipped with a
functor F : M → CMan that allows base changes, gluing of isomorphisms, and
gluing of objects.

For instance, consider the category Mg, whose objects are families f : C → S of
genus g curves, and whose morphisms (f ′ : C′ → S′) → (f : C → S) are cartesian
diagrams

C′ C

S′ S.

f ′ □ f

Moreover, consider the functor F : Mg → CMan that maps a family f : C → S
to its base S.

We observe the following properties:

• If f : C → S is a family of genus g curves, and h : S′ → S is any morphism
of complex manifolds, then we can take the base change C ×S S′ → S′ of f
along h, and this is again a family of genus g curves;

• We can glue isomorphisms of families. Let S be a complex manifold with an
open covering S =

⋃
i∈I Si, and let f : C → S and f ′ : C′ → S be families

of genus g curves. If we are given isomorphisms between the restrictions
of f and f ′ to Si for each i ∈ I, and these isomorphisms are compatible
on overlaps, then we may glue them to obtain an isomorphism between the
families f and f ′.

• We can glue objects of Mg. If we are given a complex manifold S, an open
covering S =

⋃
i∈I Si, for each i ∈ I a family fi : Ci → Si of genus g curves,

and appropriate gluing data, then we can glue these families together to
obtain a family C → S of genus g curves.

These three properties ensure that the category Mg with the functor Mg →
CMan is a stack.

Definition 2.4.1. The stack Mg is the stack of (families of) genus g curves.

We can view complex manifolds as stacks, too, as the following example demon-
strates.

Example 2.4.2. Let S be a complex manifold. Consider the category [S]. Objects
of [S] are morphisms f : T → S of complex manifolds. Morphisms (f : T → S) →
(f ′ : T ′ → S) in [S] are morphisms of complex manifolds g : T → T ′ that satisfy
f ′ ◦ g = f . We fix the functor [S] → CMan that maps an object (f : T → S) of
[S] to the complex manifold T . This functor gives [S] the structure of a stack.
Let S′ be another complex manifold. If f : S′ → S is a morphism of complex
manifolds, then composition with f yields a functor [f ] : [S′] → [S], and this
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functor is a morphism of stacks: the diagram

[S′] [S]

CMan

[f ]

is commutative.
Conversely, if F : [S′] → [S] is a morphism of stacks, then F (idS′) is a morphism
S′ → S of complex manifolds.
One checks that these two operations are inverses, and we therefore see that mor-
phisms of complex manifolds S′ → S correspond bijectively with morphisms of
stacks [S′] → [S].
We will often identify a complex manifold S with its associated stack [S].

Stacks form a 2-category. This means that the morphisms between any two
stacks form a category rather than a set. In other words: the category of stacks
consists of objects, morphisms, and morphisms between morphisms (which are
called 2-morphisms).

Let F : M → CMan be a stack and let S be a complex manifold. We
denote by MS the subcategory of M whose objects are those objects x of M
that satisfy F (x) = S, and whose morphisms are those morphisms f of M that
satisfy F (f) = idS . The 2-Yoneda lemma [SP, Tag 004B] states that there is an
equivalence of categories

Hom([S],M)
∼−→ MS

given by F 7→ F (idS).
Consider the stack Mg of families of genus g curves, and let S be a complex

manifold. Then (Mg)S is the category of genus g curves over S, and the 2-Yoneda
lemma gives us an equivalence of categories

Hom([S],Mg)
∼−→ (Mg)S .

So morphisms [S] → Mg induce families of genus g curves over S. An inverse of
Yoneda’s equivalence is found as follows: to a family f : C → S of genus g curves
we associate the functor Φf : [S] → Mg given by (T → S) 7→ (fT : C ×S T → T ).

Example 2.4.3. Let Cg be the category whose objects are pairs (f, σ) where
f : C → S is a family of genus g curves and σ : S → C is a section of f . Morphisms
(f ′, σ′) → (f, σ) in Cg are cartesian diagrams of the form

C′ C

S′ S

f ′

h′

□ f

h

such that h′ ◦ σ′ = σ ◦ h. As families with sections are well-behaved with respect
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to base changes and gluing, it follows that the functor

Cg → CMan : (f : C → S, σ : S → C) 7→ S

gives Cg the structure of a stack over CMan. There is a morphism of stacks
p : Cg → Mg that forgets the sections.
Let f : C → S be a family of genus g curves. The 2-Yoneda lemma implies that
f corresponds to a morphism of stacks Φf : [S] → Mg. We obtain a morphism
Ψf : [C] → Cg as follows. An object of [C] is a morphism g : T → C of complex
manifolds. The functor Ψf then maps g to the family C×S T → T with the section
(g, idT ) : T → C ×S T . We obtain a diagram of stacks

C Cg

S Mg

f

Ψf

p

Φf

and this diagram 2-commutes: there is a 2-isomorphism between the two induced
morphisms C → Mg. In fact, the diagram induces a representation of the fiber
product S×Mg

Cg by C. We see that the morphism of stacks p : Cg → Mg behaves
like a universal family of genus g curves.

Definition 2.4.4. The universal family of genus g curves is the morphism of
stacks p : Cg → Mg defined in Example 2.4.3.

Recall that a morphism of stacks f : X → S is representable if for each complex
manifold and each morphism of stacks S → S the fiber product X ×S S is again
representable by a complex manifold. Equivalently, for each morphism of stacks
Φ : S → S there exists a 2-cartesian diagram of the form

X X

S S
□ f

Φ

where X is a complex manifold. We say that the morphism X → S is a sub-
mersion if it is representable and for each cartesian diagram of the above form
the morphism of complex manifolds X → S is a submersion. Analogously, any
property of morphisms of complex manifolds that is stable under base change can
be generalized to morphisms of stacks. It follows from the discussion in Example
2.4.3 that the universal family of genus g curves Cg → Mg is, indeed, a family of
genus g curves.
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Example 2.4.5. This example generalizes Example 2.4.3. Let r ≥ 0 be an integer,
and define the category Crg as follows. Objects of Crg are tuples (f, σ1, . . . , σr) where
f is a family of genus g curves, and σ1, . . . , σr are sections of f . Morphisms are
cartesian diagrams of families compatible with the sections. The functor Crg →
CMan that maps a tuple (f, σ1, . . . , σr) to the base of f gives Crg the structure of
a stack.
Let f : C → S be a family of curves. Let Cr denote the r-fold fiber product

Cr = C ×S · · · ×S C.

and for i = 1, . . . , r let pi : Cr → C denote the projection onto the ith coordinate.
Then f induces a morphism of stacks Ψrf : [Cr] → Crg as follows. An object of
[Cr] is a morphism of manifolds g : T → Cr. Such a morphism induces a family
fT : C ×S T → T , together with r sections σi given by σi = (pi ◦ g, idT ) : T →
C ×S T . The functor Ψrf maps g to the object (fT , σ1, . . . , σr) of Crg . Moreover,
the morphism Ψrf , together with the morphism Cr → S induced by f , gives rise to
a representation by Cr of the fiber product Crg ×Mg

S:

Cr Crg

S Mg

Ψrf

□

Φf

Here the morphism Crg → Mg simply forgets all sections.

The stack Crg defined in Example 2.4.5 is the r-fold fiber product

Crg = Cg ×Mg
· · · ×Mg

Cg.

Note that C1
g = Cg, and C0

g = Mg.
Let f : C → S be a family of genus g curves. For each integer r ≥ 0 denote by

Cr the r-fold fiber product

Cr = C ×S · · · ×S C.

Let r, s ≥ 0 be integers, and let ϕ : {1, . . . , s} → {1, . . . , r} be a map of sets. Then
we define a morphism fϕ of complex manifolds:

fϕ : Cr → Cs : (x1, . . . , xr) 7→ (xϕ(1), . . . , xϕ(s)).

In other words, fϕ permutes, forgets, and repeats coordinates of the fiber product
Cr. Note that, if s = 0, then fϕ is the morphism Cr → S induced by f .

This construction can be generalized to the universal family f : Cg → Mg as
follows. To ϕ we associate a functor fϕ : Crg → Csg :

fϕ : (f, σ1, . . . , σr) 7→ (f, σϕ(1), . . . , σϕ(s)).

Morphisms in Crg and Csg are cartesian diagrams of families; these are left in place
by the functor fϕ. It is easy to verify that fϕ is a morphism of stacks.
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Definition 2.4.6. A tautological map is a morphism of stacks of the form fϕ :
Crg → Csg , with r, s ≥ 0 integers and ϕ a map {1, . . . , s} → {1, . . . , r}.

Let fϕ : Crg → Csg be a tautological map associated to a map ϕ : {1, . . . , s} →
{1, . . . , r}. Moreover, let h : C → S be a family of curves of genus g. Then the
diagram

Cr Crg

Cs Csg

Ψrh

hϕ □ fϕ

Ψsh

(2.4.7)

is cartesian.
Let f : C → S be a family of genus g curves, let r, s, t, u ≥ 0 be integers, and

consider the following commutative diagram of sets and the associated commuta-
tive diagram of complex manifolds:

{1, . . . , t} {1, . . . , r} Ct Cr

{1, . . . , u} {1, . . . , s} Cu Cs

ψ fψ

fη fϕη

χ

ϕ

fχ

Using the Yoneda lemma it is straightforward to show that if the leftmost diagram
is a pushout diagram in the category of sets, then the rightmost diagram is a
cartesian diagram. Similarly, if the leftmost diagram is a pushout diagram, the
associated diagram of tautological maps between stacks

Ctg Crg

Cug Csg

fψ

fη fϕ

fχ

is cartesian.

Lemma 2.4.8. If ϕ : {1, . . . , s} → {1, . . . , r} is injective, then for each family
f : C → S of genus g curves the induced morphism fϕ : Cr → Cs is a submersion.
Likewise, if ϕ is injective, then the associated tautological map fϕ : Crg → Csg is a
submersion.

Proof. Assume, first, that s = 0. Let f : C → S be a family of genus g curves.
Now fϕ is the morphism Cr → S. As submersions are stable under compositions
and base changes, the morphism Cr → S is a submersion.

As s = 0 we have Csg = Mg. We wish to prove that the morphism Crg → Mg is
a submersion. Let S be a complex manifold and let Φ : S → Mg be a morphism.
Then Φ corresponds to a family f : C → S of genus g curves, and the fiber product
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Crg ×Mg S is represented by Cr. The induced morphism of complex manifolds
Cr → S is the tautological morphism associated to ϕ. As we have seen, this
morphism is a submersion of complex manifolds. We may therefore conclude that
the tautological map Crg → Mg is a submersion.

More generally, let s ≥ 0 be any integer, and choose an injective map η :
{1, . . . , r − s} → {1, . . . , r} whose image is disjoint from the image of ϕ. Let
f : C → S be a family of genus g curves. We obtain a pushout diagram of sets,
and an associated cartesian diagram of complex manifolds:

{1, . . . , r} {1, . . . , r − s} Cr Cr−s

{1, . . . , s} ∅ Cs S

ψ

fϕ

fψ

ϕ

The morphism Cr−s → S is a submersion by the first part of this proof, so fϕ

must be a submersion, too, as submersions are stable under base change.
Analogously, the tautological map fϕ : Crg → Csg can be written as the base

change of the submersion Cr−sg → Mg by some tautological map Csg → Mg, and
therefore fϕ is a submersion.

Remark 2.4.9. As we already saw in Section 2.3 the Teichmüller space Tg is
closely related to the moduli space of genus g curves. The mapping class group
Γg = MCG+(Σg) of the compact oriented genus g surface Σg acts on Tg, and
the points in the quotient Tg/Γg are in bijective correspondence with isomorphism
classes of genus g curves. This quotient, however, does not admit the structure of
a complex manifold.
Instead of looking at the topological quotient Tg/Γg, one could consider the quo-
tient stack

[Tg/Γg],
which is defined (in a more general setting of a complex Lie group acting on a
complex manifold) as follows. Objects of [Tg/Γg] are pairs of morphisms (P →
S, P → Tg), where the morphism P → S is a Γg-covering and the morphism
P → Tg is Γg-equivariant. Morphisms are cartesian diagrams of Γg-coverings
compatible with the equivariant morphisms to Tg. The functor mapping (P →
S, P → Tg) 7→ S gives [Tg/Γg] the structure of a stack.
Suppose, now, that f : C → S is a family of genus g curves. Recall from Section
2.3 that we obtain a Γg-covering P(C/S) → S. Points of P(C/S) over s ∈ S are
Teichmüller structures on Cs, so we obtain a canonical morphism

P(C/S) → Tg,

and this morphism is clearly Γg-equivariant.
We hence obtain a canonical morphism of stacks

Mg → [Tg/Γg],

We leave it to the reader to verify that this is an isomorphism of stacks and to
construct an inverse.
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2.5 Differential forms on stacks

2.5.1 Differential forms

Differential forms on complex manifolds can be pulled back along morphisms of
manifolds. Moreover, it is possible to glue differential forms along open coverings.
As differential forms are well-behaved with respect to pullbacks and gluing, it
makes sense to construct a stack of differential forms.

Indeed, let us consider the category A∗ whose objects are simply differential
forms on any complex manifold. If η and ω are some differential forms on complex
manifolds T and S, respectively, then the morphisms η → ω in A∗ are precisely
those morphisms f : T → S of the underlying manifolds for which f∗ω = η. We
consider the functor A∗ → CMan that maps a differential form to its underlying
complex manifold. Note that this functor is faithful. It is not difficult to verify
that this functor makes A∗ a stack over CMan.

Let S be a complex manifold, and let Φ : [S] → A∗ be a morphism of stacks.
Then Φ(idS) is a differential form on S. Conversely, given a differential form ω
on S we can define a morphism Φω : [S] → A∗ of stacks that maps a morphism
f : T → S of complex manifolds (that is, an object of [S]) to the differential form
f∗ω on T . These constructions are inverses; we see therefore that differential forms
on S correspond one-to-one with morphisms of stacks [S] → A∗. This legitimizes
the following definition.

Definition 2.5.1. Let X be a stack over CMan. A differential form on X is a
morphism of stacks X → A∗.

Notice that, by the above discussion, differential forms on a complex manifold
S correspond canonically to differential forms on the underlying stack [S]. In
other words: differential forms on stacks generalize differential forms on complex
manifolds. From now on, we may identify the differential forms on a complex
manifold S with the differential forms on the associated stack [S].

Let X be a stack, and denote by π : X → CMan the corresponding functor. As
the functor A∗ → CMan is faithful, any morphism of stacks X → A∗ over CMan
is uniquely determined by its action on the objects of X . Giving a differential form
ω on X is, therefore, equivalent to giving for each object x of X a differential form
ω(x) on the complex manifold π(x), such that for each morphism f : x → y in X
we have the equality π(f)∗ω(y) = ω(x) of differential forms on π(x).

Recall that stacks form a 2-category, so morphisms between two stacks do not
form a set but a category. For an arbitrary stack X we obtain a category (and
not a set) A∗(X ) of differential forms on X . Fortunately, it is easy to verify that
there are no 2-morphisms between two differential forms on any given stack, apart
from identity morphisms. So A∗(X ) is a discrete category; differential forms on X
form a class. If X = [S] is the stack associated to a complex manifold, then the
objects of A∗([S]) are in bijective correspondence with differential forms on S. We
can therefore view the discrete category A∗([S]) as a set by identifying its objects
with the elements of A∗(S).
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2.5.2 Pullbacks

Suppose that f : S′ → S is a morphism of complex manifolds, and let [f ] : [S′] →
[S] denote the associated morphism of stacks. Let ω ∈ A∗(S) be a differential form
on S. Recall that differential forms on a complex manifold correspond bijectively
to differential forms on the associated stack. If ω corresponds to the morphism
of stacks Φω : [S] → A∗, then the pullback f∗ω corresponds to the composition
Φω ◦ [f ] : [S′] → A∗. So it makes sense to define pullbacks of differential forms
along morphisms of stacks as follows.

Definition 2.5.2. Let f : X ′ → X be a morphism of stacks. Given a differential
form ω : X → A∗ we define the pullback of ω along f to be the differential form
f∗ω := ω ◦ f : X ′ → A∗ on X ′.

This definition generalizes the definition of pullbacks of differential forms on
complex manifolds.

Example 2.5.3. The following example allows us to switch seamlessly between
evaluating differential forms on objects of stacks and taking pullbacks of differential
forms.
Let X be a stack with a differential form ω : X → A∗. Let X be any complex
manifold. Recall the 2-Yoneda equivalence

Hom(X,X )
∼−→ XX : Φ 7→ Φ(idX).

Let Φ : X → X be a morphism of stacks and let x be an object of XX . If
Φ(idX) ∼= x in XX , then we have an equality

Φ∗ω = ω(x) ∈ A∗(X).

The following observation is useful when working with differential forms on
stacks. Let f, g : X ′ → X be two morphisms of stacks, and let ω : X → A∗ be a
differential form on X . Assume that there exists a 2-isomorphism between f and
g. Then the compositions ω ◦ f and ω ◦ g : X ′ → A∗ are 2-isomorphic as well. As
there are no nontrivial 2-isomorphisms between differential forms, it follows that
f∗ω = g∗ω.

The following is a generalization of Lemma 1.1.6.

Lemma 2.5.4. Let f : X → S be a submersion of stacks. Then the functor
f∗ : A∗(S) → A∗(X ) is injective.

Proof. Let ω and η be two differential forms on S such that f∗ω = f∗η. In order
to prove that ω = η, it suffices to show that these functors evaluate equally on all
objects of S. Let s be an object of S over the complex manifold S. By using the
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2-Yoneda lemma, we can construct a 2-cartesian diagram of the form

X X

S S

Ψ

□fS f

Φ

such that X is a complex manifold, and such that Φ(idS) ∼= s in S. We now have
the following equality of differential forms on X:

f∗S(ω(s)) = f∗SΦ
∗ω = Ψ∗f∗ω = Ψ∗f∗η = f∗SΦ

∗η = f∗S(η(s)).

As fS is a submersion, we deduce from Lemma 1.1.6 that ω(s) = η(s).

2.5.3 Fiber integrals
Now, let us generalize taking fiber integrals to the setting of stacks. Recall that a
morphism X → S of stacks is a submersion if it is representable and a submersion.
That is, for each complex manifold S and each morphism Φ : S → S there exists
a 2-cartesian diagram of the form

X X

S S

Ψ

□fS f

Φ

(2.5.5)

where X is a complex manifold, and the morphism fS : X → S is a submersion of
complex manifolds.

We must first generalize the notion of differential forms with proper support
over the base of a submersion to the setting of stacks. By Proposition 1.3.14 this
property is stable under base change, and therefore it makes sense to generalize it
as follows.

Definition 2.5.6. Let f : X → S be a submersion of stacks, and let ω be a
differential form on X . We say that ω has proper support over S if for each 2-
cartesian diagram of the form 2.5.5 the pullback Ψ∗ω ∈ A∗(X) has proper support
over S.

It follows from Proposition 1.3.14 that for each submersion f : X → S of
complex manifolds, and each differential form ω ∈ A∗(X), the form ω has proper
support over S if and only if the corresponding differential form on the stack [X]
has proper support over [S].

Now, let us generalize the fiber integral operator along submersions of complex
manifolds to the setting of stacks. Let f : X → S be a submersion of stacks, and
let ω be a differential form on X with proper support over S. Moreover, we denote
the (implicitly given) functor S → CMan by π. We will construct a differential
form

∫
f
ω on S as follows. Let s be any object of S, and let S = π(s). The functor∫

f
ω should assign to s a differential form on S. By applying the 2-Yoneda lemma,
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we can construct a cartesian diagram of the form 2.5.5, such that Φ(idS) ∼= s in
SS . We obtain a differential form on S by pulling back ω along the morphism
Ψ : X → X , and then taking the fiber integral of the resulting form along the
submersion fS : X → S.

The following lemma implies that the resulting form (
∫
f
ω)s on S does not

depend on any choices. Moreover, one can show using this lemma that the above
construction indeed defines a differential form on S.

Lemma 2.5.7. Let F : X → S be a submersion of stacks. Assume we have two
2-cartesian diagrams of stacks

X1 X X2 X

S S S S

f1

Ψ1

□ F f2

Ψ2

□ F

Φ1 Φ2

where X1, X2, S are complex manifolds, and assume that there exists a 2-
isomorphism Φ1 ⇒ Φ2, or, equivalently, that Φ1(idS) ∼= Φ2(idS) in SS . Then
for each differential form ω on X with proper support over S we have∫

f1

Ψ∗
1ω =

∫
f2

Ψ∗
2ω ∈ A∗(S).

Proof. Any 2-isomorphism Φ1 ⇒ Φ2 induces a morphism u : X1 → X2 that makes
the following cube-shaped diagram 2-commute:

X1 X

X2 X

S S

S S

f1

Ψ1

u =
F

Ψ2

F

=

Φ1

=

Φ2

f2

See [SP, Tag 02XA]. Of this cube, the front, back, and rightmost face are 2-
cartesian, so the same holds for the leftmost face, which is therefore a cartesian
square of complex manifolds. By chasing through the above diagram we find the
equality ∫

f1

Ψ∗
1ω =

∫
f1

u∗Ψ∗
2ω = id∗S

∫
f2

Ψ∗
2ω =

∫
f2

Ψ∗
2ω,

where the middle equality follows from Proposition 1.3.14.

The defining property of the fiber integral can therefore be given as follows.
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Definition 2.5.8. Let f : X → S be a submersion of stacks, and let ω : X → A∗

be a differential form on X with proper support over S. The fiber integral of
ω along f is the unique differential form

∫
f
ω : S → A∗ on S that satisfies the

following property: for each cartesian diagram of the form 2.5.5, one has:

Φ∗
(∫

f

ω

)
=

(∫
f

ω

)
(Φ(idS)) =

∫
fS

Ψ∗ω ∈ A∗(S).

The properties of the fiber integral, as listed in Section 1.3, can be generalized
immediately to the setting of stacks. For example, the base change formula 1.3.14
generalizes as follows.

Proposition 2.5.9 (Base change formula for stacks). Consider a 2-cartesian
diagram of stacks

X ′ X

S ′ S

f ′

h

□ f

g

where f and f ′ are submersions. If ω is a differential form on X that has proper
support over S, then h∗ω has proper support over S ′, and the following equality
holds:

g∗
(∫

f

ω

)
=

∫
f ′
h∗ω.

Proof. Suppose that we are given a 2-cartesian diagram of the form

X X ′

S S ′

Ψ

□fS f ′

Φ

where X and S are complex manifolds. Then the following diagram is 2-cartesian,
too:

X X

S S

h◦Ψ

□fS f

g◦Φ

By assumption the pullback (h ◦ Ψ)∗ω = Ψ∗h∗ω has proper support over S. We
deduce that h∗ω has proper support over S ′.

Let s′ be any object of S ′, and let S be its image under the functor S ′ →
CMan. Define s = g(s′). By the 2-Yoneda lemma, we can construct 2-cartesian
diagrams as in the first part of this proof, such that Φ(idS) ∼= s′ in S ′

S . We then
have, by definition of the fiber integral along f ′:(∫

f ′
h∗ω

)
(s′) =

∫
fS

Ψ∗h∗ω ∈ A∗(S′).
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Note, moreover, that we have an isomorphism (g ◦ Φ)(idS) ∼= g(s′) = s in SS .
Applying the definition of the fiber integral along f now yields(

g∗
∫
f

ω

)
(s′) =

(∫
f

ω

)
(g(s′)) =

(∫
f

ω

)
(s) =

∫
fs′

(h ◦Ψ)∗ω ∈ A∗(S).

We find that the two differential forms evaluate equally on objects of S ′, so they
are equal.

2.5.4 Differential forms on moduli stacks
Let p : Cg → Mg be the universal family of genus g curves. In this thesis we are
mostly interested in differential forms on the moduli stacks Crg = Cg×Mg

· · ·×Mg
Cg

for r ≥ 0, where C0
g = Mg and C1

g = Cg. In this section we will see that we can
often pretend that these stacks are honest complex manifolds, when it comes to
studying differential forms on them. In particular, we will be able to view pullbacks
and fiber integrals along morphisms between these stacks in an intuitive way.

Let f : C → S be a family of genus g curves. Recall that f corresponds to a
morphism Φf : S → Mg, and that for all r ≥ 0 we have morphisms Ψrf : Cr → Crg
that make the following diagram cartesian:

Cr Crg

S Mg

Ψrf

□ p

Φf

Proposition 2.5.10. Let r ≥ 0 be an integer. Let ω be a differential form on
Crg . For every family f : C → S denote by ωf the differential form on Cr obtained
by pulling back ω along the canonical morphism Ψrf : Cr → Crg . The forms ωf are
compatible with base change: if we have a cartesian diagram

C′ C

S′ S

f ′ □ f

where f and f ′ are families of genus g curves, then the pullback of ωf along the
induced morphism C′r → Cr equals ωf ′ .
Conversely, if we are given a differential form ωf ∈ A∗(Cr) for each family f :
C → S of genus g curves, and these forms are compatible with base change, then
there is a unique differential form ω on Crg such that (Ψrf )

∗ω = ωf for each family
f : C → S of genus g curves.

In other words: differential forms on Mg are differential forms that occur
universally on the bases of families of genus g curves, differential forms on Cg
are differential forms that occur universally on the sources of families of genus g

64



2

2.5. Differential forms on stacks

curves, and analogous statements hold for differential forms on Crg for r ≥ 2. We
will prove Proposition 2.5.10 later in this section.

The proposition also implies that taking pullbacks and fiber integrals along
tautological maps works ‘as expected’. Indeed, let r, s ≥ 0 be integers, let ϕ :
{1, . . . , s} → {1, . . . , r} be a map, and let pϕ : Crg → Csg be the associated tauto-
logical map. Recall that we have for each family f : C → S an induced 2-cartesian
diagram of stacks (2.4.7):

Cr Crg

Cs Csg

Ψrf

fϕ □ pϕ

Ψsf

Let ω be a differential form on Csg . By the proposition, ω induces for each family
f : C → S a differential form ωf := (Ψsf )

∗ω on Cs. Likewise, the pullback ω′ :=

(pϕ)∗ω on Crg associates to each family f : C → S a differential form ω′
f := (Ψrf )

∗ω′

on Cr. But as the above diagram 2-commutes, we simply find that ω′
f = (fϕ)∗ωf

for each family f . So, roughly speaking, under the correspondences of Proposition
2.5.10, taking pullbacks of differential forms along tautological maps works ‘as
expected’.

An analogous statement can be made for fiber integrals. Suppose ϕ is injective,
so pϕ is a submersion. Let ω be a differential form on Crg , and set ω′ :=

∫
pϕ
ω. By

the base change formula we have (Ψsf )
∗ω′ =

∫
fϕ

Ψrfω. Therefore the fiber integral
is compatible with the correspondences of Proposition 2.5.10, too.

These observations will allow us to pretend that moduli stacks behave like
honest complex manifolds in Chapter 4 when we are working with differential
forms on these stacks.

Another observation we should make is the following. Assume that g ≥ 2.
Recall from Section 2.3 that the stack Tg of families of genus g curves with Teich-
müller structure is representable by a complex manifold. We have, moreover, a
morphism of stacks Tg → Mg. This is a covering map. Indeed, let S be any
complex manifold, and let Φ : S → Mg be any morphism. Then Φ corresponds
to a family of curves f : C → S. Consider the covering P(C/S) → S as defined
in Section 2.3, and notice that the base change P(C/S)×S C → P(C/S) is a fam-
ily of genus g curves with a canonical Teichmüller structure. We hence obtain a
canonical morphism P(C/S) → Tg. The following diagram is 2-commutative:

P(C/S) Tg

S Mg
Φ

In fact, this diagram is 2-cartesian: it induces a representation of the fiber product
Tg×MgS by the complex manifold P(C/S). It follows that the morphism Tg → Mg

is representable, and a covering, and in particular a submersion. This implies that
the pullback operator

A∗(Mg) → A∗(Tg)
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is injective. We may therefore view A∗(Mg) as a subset of A∗(Tg).
Analogously, the induced morphism X r

g → Crg is a covering map for all r ≥ 1,
and we obtain inclusions

A∗(Crg) → A∗(X r
g ).

We will finish this section by proving Proposition 2.5.10. We will use the
following lemmas.

Lemma 2.5.11. Recall that the objects of the stack Cg are pairs (f, σ), where
f is a family of genus g curves and σ is a section of f . Let ω : Cg → A∗ be a
differential form. Let f : C → S be a family of genus g curves, and let Ψf : C → Cg
be the canonical morphism. Then we have an equality of differential forms

Ψ∗
fω = ω(p1,∆) ∈ A∗(C),

where p1 : C2 → C is the projection and ∆ : C → C2 is its diagonal section.
If, moreover, σ : S → C is a section of f , then

ω(f, σ) = σ∗Ψ∗
fω ∈ A∗(S).

Proof. The morphism of stacks Ψf : [C] → Cg maps the canonical object idC of [C]
to the pair (p1,∆), which proves the first statement.

For the second statement, consider the cartesian diagram with sections

C C2

S C

f

(σf,idC)

□ p1

σ

σ ∆

As ω is a functor, we find:

σ∗Ψ∗
fω = σ∗ω(p1,∆) = ω(f, σ).

Lemma 2.5.12. Assume we are given for each family f : C → S of genus g curves
a differential form ωf ∈ A∗(C), compatible with base change. Then for each family
f : C → S we have an equality

∆∗ωp1 = ωf

where p1 : C2 → C is the projection and ∆ : C → C2 is its diagonal section.

Proof. Consider the cartesian diagram

C2 C

C S

p1

p2

□ f

f

66



2

2.6. Hermitian vector bundles on moduli spaces of curves

We find: p∗2ωf = ωp1 , and pulling this equality back along the diagonal gives the
desired result.

Proof of Proposition 2.5.10. Verifying Proposition 2.5.10 is straightforward if r =
0.

Suppose, now, that r = 1. Let ω : Cg → A∗ be a differential form, and for each
family f : C → S set

ωf := Ψ∗
fω ∈ A∗(C).

If we have a cartesian diagram as in the statement of the proposition, then the
following diagram is 2-commutative:

C′

C Cg

S′

S Mg

Ψf′

f ′
Ψf

p
Φf′

Φf

f

We therefore find that the pullback of ωf along the morphism C′ → C equals ωf ′ .
Conversely, suppose that we have for each family f : C → S a differential

form ωf ∈ A∗(C), compatible with base change. We then construct a functor
ω : Cg → A∗ as follows: ω sends a pair (f, σ), with f a family and σ a section,
to the differential form σ∗ωf ∈ A∗(S). As the forms ωf are compatible with base
change, this defines a morphism of stacks, so we obtain a differential form ω on
Cg.

Lemmas 2.5.11 and 2.5.12 now imply that the two constructions we described
above are inverses.

The proof for r ≥ 2 is very similar and hence omitted.

Remark 2.5.13. Recall from Remark 2.4.9 that we may view Mg as the quotient
stack [Tg/Γg], where Γg is the mapping class group of the compact oriented genus
g surface Σg that acts on the Teichmüller space Tg. Moreover we have a canonical
submersion Tg → Mg, and the corresponding pullback operator gives an inclusion
A∗(Mg) → A∗(Tg). The image of this inclusion consists of the Γg-invariant forms
on Tg. This gives us yet another way of thinking about differential forms on Mg.

2.6 Hermitian vector bundles on moduli spaces of
curves

Vector bundles on complex manifolds are well-behaved: we can take pullbacks of
vector bundles, glue vector bundles on open coverings, and glue isomorphisms of

67



Chapter 2: The moduli space of genus g curves

2

vector bundles. It therefore makes sense to construct a stack of vector bundles
on complex manifolds, as follows. The stack of (rank n) vector bundles Vn has as
its objects holomorphic vector bundles E → S of rank n, and its morphisms are
pullback diagrams of vector bundles

E′ E

S′ S.

□

The functor Vn → CMan sends a vector bundle E → S to its base space S.
If X is any other stack over CMan, then a vector bundle (of rank n) on X is a

morphism of stacks X → Vn. We obtain a category Vn(X ) = Hom(X ,Vn) of rank
n vector bundles on X . If S is a complex manifold, the 2-Yoneda lemma gives
an equivalence of categories between the category Vn([S]) of vector bundles on
the stack [S] and the category (Vn)S of vector bundles on the complex manifold
S. Note that, unlike in the setting of differential forms, this is not a bijection
but ‘merely’ an equivalence of categories. This is to be expected: the pullback
of a vector bundle along a morphism of manifolds is only defined up to a unique
isomorphism.

If f : X ′ → X is a morphism of stacks, and E : X → Vn a rank n vector
bundle on X , we can define the pullback f∗E to be the rank n vector bundle
E ◦ f : X ′ → Vn on X ′. We obtain a pullback functor f∗ : Vn(X ) → Vn(X ′).

Analogously, one can define the stack of hermitian vector bundles (of rank
n) Vn in a similar way: its objects are hermitian vector bundles of rank n, and
its morphisms are base change diagrams that induce isometries on all fibers. A
hermitian vector bundle of rank n on a stack X is then a morphism of stacks
X → Vn. For each morphism f : X ′ → X we obtain a pullback functor f∗ :
Vn(X ) → Vn(X ′).

Analogous to Proposition 2.5.10 we have:

Example 2.6.1. The category Vn(Mg) of rank n vector bundles on Mg has as
its objects functors Mg → Vn over CMan. That is: a rank n vector bundle E
on Mg assigns to each family f : C → S of genus g curves a rank n vector bundle
E(f) → S, and to each cartesian square of the form

C′ C

S′ S

f ′ □ f

h

a pullback diagram
E(f ′) E(f)

S′ S,

□
h
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under the obvious compatibility criterion with respect to compositions of cartesian
squares.
Let E1, E2 be two rank n vector bundles on Mg. A morphism of vector bundles
ϕ : E1 → E2 is a morphism of functors over CMan. That is: ϕ assigns to each
family of genus g curves a morphism ϕ(f) : E1(f) → E2(f) of vector bundles over
S, such that for each cartesian diagram of curves as above the following induced
diagram is commutative:

E1(f
′) E2(f

′)

S′ E1(f) E2(f)

S

ϕ(f ′)

h

ϕ(f)

Hermitian vector bundles on Mg can be described analogously.

Analogous to the situation with differential forms, one can show that giving a
(hermitian) vector bundle on Crg is equivalent to assigning to every family f : C → S
of genus g curves a (hermitian) vector bundle on the r-fold fiber product Cr over
S, under the corresponding base change compatibility criterion.

Example 2.6.2. Suppose that f : C → S is a family of curves. On the diagonal
bundle O(∆) we have constructed a canonical hermitian metric in Chapter 1.
This construction is stable under base change, so universally we obtain a hermitian
line bundle O(∆) on C2

g .

Example 2.6.3. Let f : C → S be a family of curves. Recall that we have a
canonical isomorphism

∆∗O(∆)
∼−→ ω⊗−1

f

and this canonical isomorphism induces a canonical metric on the relative cotan-
gent bundle ω.
This construction, too, is compatible with base change. We therefore obtain a
canonical hermitian line bundle ω = ωCg/Mg

on the universal family Cg of genus g
curves.

The first Chern form is a differential form c1 on the stack of hermitian line
bundles V1, defined as follows. The functor c1 : V1 → A∗ takes a hermitian line
bundle L → S and maps it to the differential form c1(L) ∈ A∗(S), where c1(L)
denotes the first Chern form of L on the complex manifold S. This gives a well-
defined functor as taking first Chern forms on complex manifolds commutes with
taking pullbacks. It follows that for each stack X and each hermitian line bundle
L on X we can take the first Chern form of L by composing with c1 to obtain a
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differential form c1(L) on X . Notice that this construction generalizes taking the
first Chern form of a hermitian line bundle on a complex manifold.

Next, we will generalize the construction of the Deligne pairing to the setting
of stacks. Suppose that f : X → S is a morphism of stacks, and suppose moreover
that f is a family of curves. Let L,M : X → V1 be two hermitian line bundles on
Cg. We will define a hermitian line bundle ⟨L,M⟩ : S → V1 as follows. For each
object s of S over the complex manifold S choose a cartesian diagram of the form

X X

S S.

fs

Ψs

□ f

Φs

where X is a complex manifold, and Φs is such that Φs(idS) ∼= s in SS . Then
L(Ψs(idX)) and M(Ψs(idX)) are line bundles on X. Taking the Deligne pair-
ing of these line bundles along the family fs of curves then yields a line bundle
⟨L(Ψs(idX)),M(Ψs(idX))⟩ on S. The functor ⟨L,M⟩ : S → V1 maps s to this
line bundle. A morphism in S is mapped to the canonically induced pullback dia-
gram of corresponding line bundles. Note that the functor ⟨L,M⟩ : S → V1 does
depend on choices, and is only determined up to 2-isomorphism. In other words:
the Deligne pairing of L and M is a line bundle on S, defined up to isomorphism.

It follows immediately that Proposition 1.4.13 generalizes to the setting of
stacks: we have the following equality of differential forms on S:

c1(⟨L,M⟩) =
∫
f

c1(L) ∧ c1(M).

In particular, the Deligne pairing along tautological submersions Cr+1
g → Crg be-

haves as expected.

Example 2.6.4. Consider the diagonal bundle O(∆) on C2
g and the relative

cotangent bundle ω = ωCg/Mg
on Cg with their canonical metrics. We have an

equality of differential forms on Cg:∫
p1:C2

g→Cg
c1(O(∆))2 = c1(⟨O(∆), O(∆)⟩) = c1(∆

∗O(∆)) = −c1(ω).

2.7 The universal Jacobian bundle
The Jacobian of the universal family p : Cg → Mg is a stack whose objects are
pairs (f, σ) where f : C → S is a family of genus g curves and σ : S → JC/S is a
section of the Jacobian family JC/S associated to f . Morphisms (f ′, σ′) → (f, σ)
in Jg are cartesian diagrams

C′ C

S′ S

f ′ □ f
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such that the induced diagram

JC′/S′ JC/S

S′ S

σ′ σ

is commutative. The functor Jg → CMan that maps a pair (f, σ) to the base of f
gives Jg the structure of a stack. Forgetting sections yields a canonical morphism
of stacks Jg → Mg.

Recall that every family f : C → S of genus g curves gives rise to a morphism
of stacks Φf : S → Mg. It is straightforward to show that the fiber product of
stacks S ×Mg

Jg is then represented by the relative Jacobian JC/S of f . More
precisely: there is a natural morphism JC/S → Jg, and the following diagram of
stacks is 2-cartesian:

JC/S Jg

S Mg

□
Φf

It follows that the morphism of stacks Jg → Mg is a family of complex tori.
The following analogue to Proposition 2.5.10 is easily seen to hold:

Proposition 2.7.1. Let ω be a differential form on Jg. For each family f : C → S
of genus g curves let Jf → S denote the relative Jacobian family of f , and let
ωf ∈ A∗(Jf ) denote the pullback of ω along the induced morphism of stacks
Jf → Jg. The forms ωf are compatible with base change: for each cartesian
diagram

C′ C

S′ S

f ′ □ f

with f and f ′ families of genus g curves, the pullback of ωf along the induced
morphism Jf ′ → Jf equals ωf ′ .
Conversely, if we are given a differential form ωf ∈ A∗(Jf ) for each family f of
genus g curves, satisfying the necessary compatibility conditions under pullbacks,
then there is a unique differential form ω on Jg such that the pullback of ω along
the canonical morphism Jf → Jg equals ωf for each family f of genus g curves.

Similarly, (hermitian) vector bundles on Jg can be viewed as (hermitian) vector
bundles that occur universally on the relative Jacobians of all families of genus
g curves. For instance, we obtain the canonical hermitian line bundle B on the
universal Jacobian bundle Jg. This allows us to generalize the results from Section
1.4 to the universal setting. For instance, we have canonical morphisms of stacks

δ : C2
g → Jg and κ : Cg → Jg.
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Here δ maps a family f : C → S with sections σ1, σ2 : S → C to the pair (f, σ) in
Jg, with σ the section

σ : S → Jf : s 7→ [O(σ2(s)− σ1(s))] ∈ Jac(Cs).

Likewise, the morphism κ maps a family f : C → S with section σ to the pair
(f, σ) in Jg, where σ is the section

σ : S → Jf : s 7→ [O((2g − 2)σ(s))⊗ ω⊗−1] ∈ Jac(Cs).

We then have canonical isometries

δ∗B⊗−1 ∼−→ p∗1ω
⊗−1 ⊗ p∗2ω

⊗−1 ⊗O(∆)⊗−2

and
κ∗B⊗−1 ∼−→ ω−2g(2g−2) ⊗ p∗⟨ω, ω⟩p.

of hermitian vector bundles on C2
g and Cg, respectively.
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Chapter 3

Marked graphs

In this chapter we will study r-marked graphs, where r ≥ 0 is an integer. These are
finite graphs of which r of the vertices are labeled with the integers 1, . . . , r. We
define categories of r-marked graphs, show that these categories have pushouts,
and construct pushforward and pullback functors between these categories.

A contracted r-marked graph is an r-marked graph whose vertices have a suf-
ficiently high degree, and any r-marked graph can be turned into a contracted
r-marked graph by means of certain contraction operations. It turns out that for
each r ≥ 0 and each χ ∈ Z there are only finitely many isomorphism classes of
contracted r-marked graphs of characteristic χ. We will describe an algorithm to
compute the number of isomorphism classes.

The reason we are interested in r-marked graphs is that they provide us with
a combinatorial framework that can be used to work with tautological differential
forms. Fix an integer g > 1. In Chapter 4, we will describe a method of assigning
to each r-marked graph Γ a tautological differential form αΓ ∈ R∗(Crg). It turns
out that there is an interaction between r-marked graphs and tautological forms
on Crg , where taking pushouts corresponds to taking wedge products, and taking
pushforwards and pullbacks of graphs corresponds to taking pullbacks and fiber
integrals of forms.

Moreover, it turns out that all tautological differential forms on Crg arise from
contracted r-marked graphs. We can give upper bounds to the dimensions of
spaces of tautological forms by computing the number of marked graphs. In short,
the combinatorial heavy lifting will be done in this chapter, and we use the results
from this chapter to bound dimensions of spaces of tautological forms in Chapter
4.

3.1 The category of r-marked graphs
In this thesis, a graph is a pair (V,E), consisting of a finite set V of vertices, and a
finite multiset E of edges consisting of unordered pairs (multisets of cardinality 2)
of elements of V . If e ∈ E is an edge, its two elements are called the endpoints of
e. If these endpoints are the same, we call e a loop. The degree of a vertex v ∈ V ,
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denoted deg v, is the number of times v occurs as an endpoint of an edge of E;
that is: the multiplicity of v in the multiset sum of all edges e ∈ E. In particular,
we see that each loop contributes 2 to the degree of the vertex it is based on.

In short, we assume our graphs to be finite and undirected, and our graphs are
allowed to have multiple edges and loops. Moreover, our graphs do not necessarily
have to be connected.

If Γ = (V,E) is a graph, then the (Euler) characteristic of Γ is defined as

χ(Γ) = |V | − |E|.

The Euler characteristic is additive on disjoint unions of graphs.
Let r ≥ 0 be an integer. An r-marked graph (V,E,m) is a graph Γ = (V,E)

equipped with a marking m; that is: an injective map m : {1, . . . , r} → V . So a
marked graph can be seen as a graph of which r vertices are labeled 1, . . . , r. An
unmarked graph is a 0-marked graph, which is the same as an ‘ordinary’ graph.

Let Γ = (V,E,m) be an r-marked graph. A vertex v ∈ V is marked if it is in
the image of m, and unmarked otherwise. We have a partition of V in a subset
V+ of marked vertices and a subset V− of unmarked vertices.

Let Γ = (V,E,m) and Γ′ = (V ′, E′,m′) be two r-marked graphs. A morphism
of r-marked graphs f : Γ → Γ′ is a pair of maps (fv : V → V ′, fe : E → E′), such
that fv respects the r-marking (that is: fv ◦m = m′), and such that for each edge
e ∈ E with endpoints v, w, the edge fe(e) ∈ E′ has endpoints fv(v) and fv(w).

We obtain a category Gr of r-marked graphs. Two r-marked graphs Γ and Γ′

are isomorphic if and only if there exists a bijection on vertices that respects the
markings of Γ and Γ′, such that for each pair of vertices v, w of Γ the number
of edges between v and w equals the number of edges between the corresponding
vertices of Γ′.

Example 3.1.1. The following two 1-marked graphs are not isomorphic:

1 1
and

Indeed, the marked vertex in the leftmost graph has degree 4, while the marked
vertex in the rightmost graph has degree 2.
The corresponding 0-marked graphs, obtained by ‘forgetting’ the 1-markings, are
isomorphic.

The following construction will return in the next sections. Assume that Γ =
(V,E) is a graph, and let f : V → V ′ be a map of finite sets. The graph induced
(from Γ) by f , notation Γf , is the graph (V ′, E′) with set of vertices equal to V ′,
and with edges

E′ = {{f(v1), f(v2)} : {v1, v2} ∈ E}.

Notice that in particular we have |E| = |E′|.
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The characteristic of Γf equals

χ(Γf ) = χ(Γ) + |V ′| − |V |.

If v′ ∈ V ′ is a vertex in V ′, its degree is given by:

deg(v′) =
∑

v∈f−1(v′)

deg(v).

3.2 Gluing marked graphs
In this section we define a binary operation ⊔r on the category of r-marked graphs
Gr. It turns out that ⊔r is the coproduct in the category Gr. We define the
binary operation ⊔r on two r-marked graphs Γ,Γ′ by gluing their marked vertices
pairwise. More precisely, we proceed as follows.

Let Γ = (V,E,m) and Γ′ = (V ′, E′,m′) be two r-marked graphs, and let
Γ⊔ Γ′ = (V ⊔ V ′, E +E′) denote the disjoint union of the underlying (unmarked)
graphs. Consider the set V ′′ defined by the pushout diagram

{1, . . . , r} V

V ′ V ′′.

m

m′
⌟

(3.2.1)

In other words, V ′′ is the set (V ⊔ V ′)/ ∼, where ∼ is the smallest equivalence
relation on V ⊔ V ′ such that m(i) ∼ m′(i) for all i ∈ {1, . . . , r}. Note, moreover,
that the map m′′ : {1, . . . , r} → V ′′ induced by the above diagram is injective,
since m and m′ are injective.

Definition 3.2.2. The r-marked graph Γ ⊔r Γ′ is the graph induced from the
disjoint union Γ ⊔ Γ′ by the natural map V ⊔ V ′ → V ′′, endowed with the r-
marking m′′ : {1, . . . , r} → V ′′ obtained from pushout diagram 3.2.1.

In short: we take the disjoint union of Γ and Γ′, and identify the vertices in V
and V ′ whose markings are equal.

Example 3.2.3. The following picture illustrates the operation ⊔2 on G2.

1

2

⊔2

1

2

=
1

2

Suppose that Γ has u unmarked vertices and e edges, and that Γ′ has u′
unmarked vertices and e′ edges. It follows that Γ ⊔r Γ′ has u + u′ unmarked
vertices and e+ e′ edges. Therefore, the characteristic of Γ ⊔r Γ′ is given by

χ(Γ ⊔r Γ′) = χ(Γ) + χ(Γ′)− r. (3.2.4)
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The set of vertices of Γ ⊔r Γ′ is the pushout of the maps m and m′. It is
therefore straightforward to verify the following.

Proposition 3.2.5. For each pair of r-marked graphs Γ1,Γ2, the graph Γ1 ⊔r Γ2

is the coproduct of Γ1 and Γ2 in the category Gr.

We find that the operator ⊔0 on G0 is simply the disjoint union. On G1 the
operator ⊔1 is the wedge sum.

Proposition 3.2.6. The category Gr has all finite coproducts.

Proof. The graph consisting of r marked vertices, no unmarked vertices, and no
edges is the initial object of Gr. As Gr has an initial object and all binary coprod-
ucts, it follows that Gr has all finite coproducts.

3.3 Pushforward maps on marked graphs
Let ϕ : {1, . . . , s} → {1, . . . , r} be a map of sets. We will define a pushforward
functor ϕ∗ : Gs → Gr. Given a graph Γ ∈ Gs, the pushforward ϕ∗Γ is obtained
from Γ by replacing the s marked vertices by r marked vertices, as follows.

Let Γ = (V,E,m) be an s-marked graph. Consider the pushout diagram (of
sets)

{1, . . . , s} V

{1, . . . , r} V ′.

m

⌟
ϕ ϕV

m′

(3.3.1)

As m is injective, it follows that m′ must be injective.
We define ϕ∗Γ to be the graph (V ′, E′,m′), where (V ′, E′) is the graph induced

from (V,E) by ϕV , and m′ is the map defined in diagram 3.3.1. Notice that ϕV
then induces a bijection between the unmarked vertices of Γ and ϕ∗Γ.

Alternatively, we can construct the graph ϕ∗Γ as follows: first, we construct
a graph Γ′′ by adding r vertices v′′1 , . . . , v′′r to Γ. Next, we define the equivalence
relation ∼ on the set of vertices V ′′ to be the smallest equivalence relation such
that vi ∼ v′′ϕ(i) for all i ∈ {1, . . . , s}, where v1, . . . , vs are the marked vertices of Γ.
Then ϕ∗Γ is the graph quotient Γ′′/ ∼.

The characteristic of ϕ∗Γ is given by

χ(ϕ∗Γ) = χ(Γ)− s+ r.

Example 3.3.2. Let ϕ : {1, 2} → {1} be the unique map. The pushforward
ϕ∗ : G2 → G1 identifies the two marked points of a 2-marked graph. The following
picture illustrates taking the pushforward ϕ∗Γ of a graph Γ ∈ G2:
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1

2

ϕ∗ 1

Example 3.3.3. Consider the map ϕ : {1} → {1, 2} that maps 1 to 1. The
pushforward map ϕ∗ adds a second marked vertex to any 1-marked graph Γ. This
second marked vertex is not the endpoint of any edge.

1 ϕ∗
1

2

Moreover, if f : Γ1 → Γ2 is a morphism of s-marked graphs, we obtain an
induced morphism of r-marked graphs ϕ∗f : ϕ∗Γ1 → ϕ∗Γ2, via the universal
property of the pushout diagram 3.3.1. We obtain a covariant functor

ϕ∗ : Gs → Gr.

It is not hard to see that the pushforward functor is well-behaved with respect
to compositions.

Proposition 3.3.4. Let ϕ : {1, . . . , s} → {1, . . . , r} and ψ : {1, . . . , t} →
{1, . . . , s} be maps. Then the functors ϕ∗ψ∗ and (ϕψ)∗ from Gt to Gr are nat-
urally isomorphic.

The pushforward operator is compatible with gluing.

Proposition 3.3.5. Let ϕ : {1, . . . , s} → {1, . . . , r} be a map. Let Γ and Γ′ be
two s-marked graphs. Then there is a canonical isomorphism of graphs

ϕ∗(Γ ⊔s Γ′) ≃ ϕ∗(Γ) ⊔r ϕ∗(Γ′).

Proof. Let V and V ′ denote the sets of vertices of Γ and Γ′, respectively. The set
V1 of vertices of ϕ∗(Γ ⊔s Γ′) can be obtained by repeatedly taking pushouts:

V1 = (V ⊔{1,...,s} V
′) ⊔{1,...,s} {1, . . . , r}

The same holds for the set V2 of vertices of ϕ∗(Γ) ⊔r ϕ∗(Γ′):

V2 = (V ⊔{1,...,s} {1, . . . , r}) ⊔{1,...,r} (V
′ ⊔{1,...,s} {1, . . . , r}),

By the universal property of pushouts these sets are canonically isomorphic. It
is straightforward to verify that the canonical isomorphism induces a bijection on
edges.
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3.4 Pullback maps on marked graphs

The next operation we will consider is a pullback operation. Let

ϕ : {1, . . . , s} → {1, . . . , r}

be an injective map. Then we define a pullback functor

ϕ∗ : Gr → Gs

as follows. For any r-marked graph Γ = (V,E,m) we simply define ϕ∗Γ by pre-
composing the marking m with the injection ϕ:

ϕ∗(Γ) = (V,E,m ◦ ϕ).

So all the pullback functor does is maybe re-ordering and possibly forgetting some
markings of vertices.

It follows that
χ(ϕ∗Γ) = χ(Γ).

If f : Γ1 → Γ2 is a morphism of r-marked graphs, then f induces a morphism
ϕ∗f : ϕ∗Γ1 → ϕ∗Γ2 in a natural way. It is straightforward to verify that ϕ∗ is a
functor from Gr → Gs.

Example 3.4.1. Let ϕ : {1} → {1, 2} be the inclusion. The pullback ϕ∗ : G2 → G1

takes a 2-marked graph and turns it into a 1-marked graph by forgetting the
marking of the second marked point.

1

2

ϕ∗
1

Similarly to the pushforward, it is easy to see that the pullback is well-behaved
with respect to compositions.

Proposition 3.4.2. Let ϕ : {1, . . . , s} → {1, . . . , r} and ψ : {1, . . . , t} →
{1, . . . , s} be injective maps. Then the functors ψ∗ϕ∗ and (ϕψ)∗ from Gr to Gt
are equal.

There is an adjointness between the pushforward and pullback functor. Con-
trary to what the terms ‘pushforward’ and ‘pullback’ might suggest to a geometer,
the pushforward functor is left adjoint to the pullback. To ease our minds, we
recall that the (left adjoint) pushforward functor does pushouts on sets of ver-
tices, and the (right adjoint) pullback functor is a functor that forgets some of the
markings.
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Proposition 3.4.3. If ϕ : {1, . . . , s} → {1, . . . , r} is an injective map, the push-
forward functor ϕ∗ : Gs → Gr is left adjoint to the pullback functor ϕ∗ : Gr → Gs.

Proof. The statement follows from the universal property of the pushout diagram
3.3.1, together with the fact that the pushforward and pullback maps do not alter
the sets of edges.

3.5 The monoid of r-marked graphs
In the previous sections we have defined the categories of marked graphs, showed
that these categories have coproducts, and constructed pushforward and pullback
functors between these categories. Later on, we will try to classify such r-marked
graphs, or rather a specific subset of contracted r-marked graphs. In Chapter 4
we will use this classification of r-marked graphs in order to classify tautological
differential forms. For these purposes, categories of marked graphs are too big; we
only need to find all r-marked graphs up to isomorphism.

Definition 3.5.1. Let r ≥ 0 be an integer. Then we denote by G(r) the set
of isomorphism classes of r-marked graphs. If χ ∈ Z is another integer, we let
G(r, χ) ⊆ G(r) denote the subset of the isomorphism classes of r-marked graphs
with characteristic χ. Lastly, if u ≥ 0 is an integer, the subset G(r, χ, u) ⊆ G(r, χ)
denotes the subset of the classes of the graphs that have u unmarked vertices.

Of course, we need to be a bit careful here and remark that this definition
of G(r) does not yield a set under the ZFC axioms, as almost every element of
G(r) will be a proper class. However, it is straightforward to construct a set S of
r-marked graphs such that every r-marked graph is isomorphic to one in S, and
we can then view G(r) as the quotient set S/∼=.

Given isomorphisms of r-marked graphs Γ1
∼= Γ2 and Γ′

1
∼= Γ′

2, there exists a
natural isomorphism (Γ1 ⊔r Γ′

1)
∼= (Γ2 ⊔r Γ′

2). This implies that the operator ⊔r
defines a binary operation on the set G(r). We immediately obtain the following
proposition.

Proposition 3.5.2. Equipping the set G(r) with the binary operation ⊔r yields a
commutative monoid, whose identity element is (the class of) the r-marked graph
with no edges and no unmarked vertices.

It follows from Equation 3.2.4 that the map

χr : G(r) → Z : Γ 7→ χ(Γ)− r

is a homomorphism of monoids.
Suppose, now, that ϕ : {1, . . . , s} → {1, . . . , r} is a map of sets. This map

defines a pushforward functor on marked graphs ϕ∗ : Gs → Gr. This functor
induces a map ϕ∗ : G(s) → G(r). The following proposition follows directly from
Proposition 3.3.5.
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Proposition 3.5.3. For every map ϕ : {1, . . . , s} → {1, . . . , r}, the map G(s) →
G(r) induced by the functor ϕ∗ : Gs → Gr is a homomorphism of monoids.

If ϕ is an injective map, we also have a pullback functor ϕ∗ : Gr → Gs. The
induced map on monoids G(r) → G(s), however, is almost never a homomorphism.
For instance, consider the identity element Γ ∈ G(r), which is the r-marked graph
with no edges and no unmarked vertices. Then ϕ∗Γ is an s-marked graph with
(r− s) unmarked vertices, so this graph is not the identity element of G(s) unless
r = s.

3.6 Contracted graphs

In Chapter 4 we will fix an integer g > 1, and associate to any r-marked graph
Γ a differential form αΓ on the moduli stack Crg . It will turn out that the form
αΓ is invariant under certain contraction operations on these r-marked graphs.
This will allow us to restrict ourselves to studying differential forms associated to
graphs which cannot be contracted any further. We will study such graphs in this
section.

Definition 3.6.1. Let Γ be an r-marked graph. Then Γ is contracted if all its
unmarked vertices have degree at least 3, and each unmarked vertex of degree 3
is incident to three distinct edges.
We denote by CG(r) ⊆ G(r) the subset of isomorphism classes of contracted r-
marked graphs.

Equivalently, a marked graph is contracted if each unmarked vertex has degree
at least 3, and there are no loops at any of the unmarked vertices of degree 3.

Notice that, by construction of the binary operation ⊔r, the subset CG(r) ⊆
G(r) is in fact a submonoid.

Example 3.6.2. The following marked graphs are contracted.

1 1 2

The following marked graphs are not contracted.

1
1

If a graph is not contracted, we can attempt to turn this graph into a contracted
graph by altering the problematic vertices.

80



3

3.6. Contracted graphs

Definition 3.6.3. Let Γ = (V,E,m) be an r-marked graph, and let v ∈ V be an
unmarked vertex such that deg(v) ≤ 2, or such that deg(v) = 3 and v is incident
to a loop. The graph obtained from Γ by contracting v is an r-marked graph Γ′

defined by the following operation:

0. If deg v = 0, remove v;
1. If deg v = 1, remove v and the unique edge incident to v;
2. If deg v = 2, smooth out the vertex v; that is:

(a) If v is incident to two distinct edges, whose other endpoints w,w′ are
distinct, remove v and these two edges, and add an edge between w and
w′;

(b) If v is incident to two distinct edges, whose second endpoint is the same
vertex w, remove v and these two edges, and add a loop at w;

(c) If v is incident to a single loop, remove v and this loop;

3. If deg v = 3, and w is the other endpoint of the non-loop edge incident to v,
remove v, this edge, and the loop at v, and add a loop at w.

It follows that the vertex set of the graph obtained from Γ by contracting v is
equal to V \ {v}.

Example 3.6.4. The following example illustrates all of the graph manipulations
listed in the above definition. The graph is unmarked.

(0) (1) (2a)

(2b)

(2c)(3)

If we are given an r-marked graph Γ, we can always reduce Γ to a contracted
r-marked graph by applying a finite amount of graph contractions. We hence
obtain a map

ϱ : G(r) → CG(r),

and this map is a retraction of the inclusion CG(r) ⊆ G(r). Moreover, as the con-
traction operations only apply to unmarked vertices, it follows that the contraction
map commutes with gluing of r-marked graphs:

ϱ(Γ1 ⊔r Γ2) = ϱ(Γ1) ⊔r ϱ(Γ2).
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In other words: CG(r) is a submonoid of G(r) and the contraction map ϱ : G(r) →
CG(r) is a homomorphism of monoids.

3.7 Counting contracted graphs

The number of contracted r-marked graphs is infinite. For instance, for r = 0,
and e ≥ 2, we can consider the unmarked graph consisting of 1 vertex and e
loops. This example gives us an infinite family of contracted unmarked graphs.
However, a finiteness result does hold if we only consider r-marked graphs of a
fixed characteristic.

Theorem 3.7.1. Let r ≥ 0, and χ ∈ Z. There are, up to isomorphism, only
finitely many contracted r-marked graphs of characteristic χ. These graphs have
at most 2(r − χ) unmarked vertices.

Proof. Let Γ be a contracted r-marked graph of characteristic χ, and let u denote
its number of unmarked vertices, and e its number of edges. We have:

χ = r + u− e.

Moreover, every unmarked vertex has degree at least 3. It follows that

2e =
∑
v∈Γ

deg(v) ≥ 3u.

After substituting e = r + u− χ, we find:

u ≤ 2r − 2χ,

and hence
e = r + u− χ ≤ 3r − 3χ.

We have obtained upper bounds for the number of vertices and edges of Γ, and
a simple combinatorial argument then shows that there can only be finitely many
graphs of this form up to isomorphism.

We let CG(r, χ) ⊆ CG(r) denote the set of equivalence classes of contracted
r-marked graphs of characteristic χ. By Theorem 3.7.1 the cardinality of this set
is finite. Moreover, we denote by CG(r, χ, u) ⊆ CG(r, χ) the set of isomorphism
classes of graphs with u unmarked vertices. Theorem 3.7.1 yields:

CG(r, χ) =

2(r−χ)⊔
u=0

CG(r, χ, u).

Example 3.7.2. In this example we will compute the set CG(r, r − 1) for all
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r ≥ 0. By Theorem 3.7.1 we have:

CG(r, r − 1) = CG(r, r − 1, 0) ⊔ CG(r, r − 1, 1) ⊔ CG(r, r − 1, 2).

Note that for each graph Γ ∈ CG(r, r − 1, u) with r marked vertices, u unmarked
vertices, and e edges, one has χ(Γ) = r + u− e = r − 1, so e = u+ 1.

• Every graph Γ ∈ CG(r, r − 1, 0) has no unmarked vertices and one edge
(possibly a loop) between two (not necessarily distinct) marked vertices. It
follows that there are 1

2r(r + 1) such graphs.

1 2 1 2 1 2

• Every graph Γ ∈ CG(r, r− 1, 1) has two edges and one unmarked vertex. As
Γ is contracted and contains only two distinct edges, its unmarked vertex
has degree at least 4, so the two edges of Γ must be two loops based at the
unmarked vertex. We find that CG(r, r − 1, 1) only has one element.

1 2

• Every graph Γ ∈ CG(r, r− 1, 2) has three edges and two unmarked vertices.
As each unmarked vertex must have degree ≥ 3 and there are only three
edges in Γ, it follows that the degree of both unmarked vertices equals 3,
and that they are both incident to each of the three edges of Γ. Therefore
CG(r, r − 1, 2) has only one element.

1 2

We find that the number of elements of CG(r, r − 1) equals

|CG(r, r − 1)| = 1
2r(r + 1) + 1 + 1 = 1

2r
2 + 1

2r + 2.

In general the set CG(r, χ, u) can be computed with an algorithm as follows:

Algorithm 3.7.3. The following (pseudocode) algorithm computes all isomor-
phism classes of contracted r-marked graphs with u unmarked vertices and char-
acteristic χ.

def compute_CG(r,χ,u):
L = ∅ # list of graphs
e = r + u - χ # number of edges
Γ = (r-marked graph with u unmarked vertices, no edges)
P = {unordered pairs of vertices of Γ} # possible edges
# loop over all possible configurations of edges:
for E in {multisets of size e with elements from P}:
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ΓE = Γ equipped with edges from E
# check if ΓE is contracted, and if ΓE was not found before:
if ΓE.is_contracted() and ΓE ≇ Γ2 for all Γ2 in L:

# if so, add Γ to the list
L.add(ΓE)

return L

Moreover, Theorem 3.7.1 implies that we can compute the set CG(r, χ) in finite
time by computing CG(r, χ, u) for 0 ≤ u ≤ 2(r−χ) and taking their disjoint union.

Of course, the combinatorial complexity of constructing graphs, checking if
they are contracted, and checking if they are isomorphic to any of the graphs we
found before, will become worse and worse if r increases and if χ decreases. In
Section 3.8 we will show that for all d ≥ 0 the size of CG(r, r−d) in terms of r can
be expressed as a polynomial of degree 2d; so if we are given d, we can compute a
formula for |CG(r, r − d)| for all r ≥ 0 in finite time. In Section 3.9 we will then
compute these polynomials for d ≤ 4 by computing its first values and applying
Lagrange interpolation.

3.8 The size of CG(r, r − d) in terms of r
In this section we will prove that, given an integer d ≥ 0, one can compute a closed
formula for the number of contracted r-marked graphs of characteristic r − d for
all r ≥ 0. This will prove useful in Chapter 4, as it allows us to compute upper
bounds for the dimensions of spaces of tautological forms on Crg that do not depend
on the genus g.

Theorem 3.8.1. Let d ∈ Z be an integer. If d is negative, CG(r, r − d) is empty
for all r ≥ 0. If d ≥ 0, then there exists a polynomial fd ∈ Q[x] of degree 2d such
that

|CG(r, r − d)| = fd(r) for all r ≥ 0.

The leading coefficient of fd is 1/(2d · d!).

In fact, the following stronger theorem directly implies Theorem 3.8.1.

Theorem 3.8.2. Let d ∈ Z and u ≥ 0 be integers. If 2d − u is negative, then
CG(r, r−d, u) is empty for all r ≥ 0. If 2d−u ≥ 0, then there exists a polynomial
fd,u ∈ Q[x] of degree at most 2d− u such that

|CG(r, r − d, u)| = fd,u(r) for all r ≥ 0.

If u = 0, then fd,0 has degree 2d, and the leading coefficient of fd,0 is 1/(2d · d!).

To see that Theorem 3.8.2 implies Theorem 3.8.1, notice that

|CG(r, r − d)| =
∞∑
u=0

|CG(r, r − d, u)| =
2d∑
u=0

|CG(r, r − d, u)| =
2d∑
u=0

fd,u(r),
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where the middle equality follows from Theorem 3.7.1.
It remains to prove Theorem 3.8.2. The crucial observation here is that after r

becomes large enough, no ‘new’ contracted graphs appear, and the only contracted
graphs that do appear come from lower values of r. This is implied by the following
lemmas.

Lemma 3.8.3. Let Γ ∈ CG(r, r − d, u) be a contracted graph. The number
of marked vertices that have positive degree is at most 2d − u. In particular, if
r > 2d− u, there are marked vertices in Γ of degree 0.

Proof. Let Γ ∈ CG(r, r− d, u). Denote by r+ the number of marked vertices with
positive degree. As Γ is contracted, it follows that each unmarked vertex has
degree at least 3. We obtain:

2e =
∑
v∈Γ

deg(v) ≥ r+ + 3u.

The characteristic of Γ equals r − d, so we have:

r − d = χ = r + u− e.

Substituting e = u+ d into the above inequality yields r+ ≤ 2d− u. If r > 2d− u
we must conclude that r+ < r, so Γ has a marked vertex of degree 0.

Lemma 3.8.4. Let 0 ≤ s ≤ r be integers, and let ϕ : {1, . . . , s} → {1, . . . , r}
be an injection. Set C = {1, . . . , r} \ Im(ϕ). Recall that the pushforward functor
induces a map

ϕ∗ : G(s) → G(r).

This map is injective, and its image consists of those classes of r-marked graphs
whose ith marked vertex has degree 0 for all i ∈ C.

Proof. Let Γ = (V,E,m) be an s-marked graph, and let Γ′ = ϕ∗Γ = (V ′, E′,m′).
The following diagram is a pushout diagram

{1, . . . , s} V

{1, . . . , r} V ′.

m

ϕ
⌟

ϕv

m′

As m and ϕ are injective, it follows that:

Im(ϕv) ∩ Im(m′) = Im(ϕv ◦m) = Im(m′ ◦ ϕ).

If v′ = m′(i) is a marked vertex of Γ′ of positive degree, then v′ must lie in
the image of ϕv, as the endpoints of every edge in Γ′ lie in the image of ϕv, by
construction. As v′ = m′(i) ∈ Im(ϕv) ∩ Im(m′), we see that i ∈ Im(ϕ), so i /∈ C.
In other words: for each i ∈ C the marked vertex m′(i) has degree 0.
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Assume, now, that Γ′ = (V ′, E′,m′) is an r-marked graph such that the vertex
m′(i) has degree 0 for all i ∈ C. We construct an s-marked graph Γ = (V,E,m)
as follows: we let V = V ′ \ m′(C), E′ = E, and m = m′ ◦ ϕ. It follows that
this construction is inverse to the construction done in the first paragraph of this
proof. This observation hinges on the fact that the following diagram is a pushout
diagram.

{1, . . . , s} V ′ \m(C)

{1, . . . , r} V ′.

m′◦ϕ

ϕ
⌟

m′

It follows that ϕ∗ induces a bijection from classes of s-marked graphs to classes of
r-marked graphs whose ith marked vertex has degree 0 for all i ∈ C.

Lemma 3.8.5. Let 0 ≤ s ≤ r be integers, and let ϕ : {1, . . . , s} → {1, . . . , r} be
an injection. The pushforward functor ϕ∗ induces an injective map

ϕ∗ : CG(s) → CG(r),

and hence injective maps for d ≥ 0

ϕ∗ : CG(s, s− d) → CG(r, r − d),

and for d, u ≥ 0
ϕ∗ : CG(s, s− d, u) → CG(r, r − d, u),

The images of these maps consist of the classes of those graphs whose ith marked
vertex has degree 0 for all i ∈ {1, . . . , r} \ Im(ϕ).

Proof. The constructions made in the proof of Lemma 3.8.4 (deleting degree 0
marked vertices, taking pushforwards) do not affect unmarked vertices. Therefore
it follows that an s-marked graph Γ is contracted if and only if ϕ∗Γ is contracted.
As we observed in Section 3.3, the pushforward operator increases the character-
istic of a graph by r − s, so ϕ∗ maps graphs of characteristic s − d to graphs of
characteristic r − d. The number of unmarked vertices remains the same.

We are almost ready to prove Theorem 3.8.2. In the proof of this theorem we
will use a combinatorial argument to show that |CG(r, r − d, u)| can be expressed
as a polynomial in r of degree at most 2d − u. More precisely, we will show that
|CG(r, r − d, u)| is fully determined by the values it takes for 0 ≤ r ≤ 2d− u, and
given by a recurrence relation. We will then apply the following recurrence relation
for polynomials to see that |CG(r, r − d, u)| can be expressed as a polynomial in
r.

Lemma 3.8.6. Let R be a commutative ring, let r ≥ 0, and let f ∈ R[x] a
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polynomial of degree less than r. Then

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ k) = 0.

Proof. The forward difference operator ∆ : R[x] → R[x] maps a polynomial f to
f(x + 1) − f(x). This map is R-linear, and maps polynomials of degree ≤ d to
polynomials of degree ≤ d − 1. It follows that ∆r annihilates all polynomials of
degree less than r.

Moreover, one can prove using an inductive argument the identity

∆rf =

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ k),

for all f ∈ R[x] and all r ≥ 0. If deg f < r the desired identity follows.

Proof of Theorem 3.8.2. If u > 2d, then there are no contracted r-marked graphs
of characteristic r − d; this follows from Theorem 3.7.1.

Assume, from now on, that u ≤ 2d. For each subset A ⊆ {1, . . . , r} of cardi-
nality k, we define a subset

SA ⊆ CG(r, r − d, u)

as follows: we let ϕA : {1, . . . , r− k} → {1, . . . , r} denote the increasing map with
image {1, . . . , r} \A. Then SA is the image of the (injective!) pushforward map

ϕA,∗ : CG(r − k, r − k − d, u) → CG(r, r − d, u).

It follows from Lemma 3.8.5 that a graph Γ ∈ CG(r, r − d, u) lies in SA if and
only if for all i ∈ A the vertex m(i) has degree 0. We therefore have, for subsets
A1, . . . , Am ⊆ {1, . . . , r}:

SA1 ∩ · · · ∩ SAm = SA1∪···∪Am .

If r > 2d−u, it follows from Lemma 3.8.3 that at least one of the marked vertices
of each graph in CG(r, r−d, u) has degree 0. We can therefore write CG(r, r−d, u)
as:

CG(r, r − d, u) =

r⋃
i=1

S{i}.
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The inclusion–exclusion principle then gives, for all r > 2d− u:

|CG(r, r − d, u)| =

∣∣∣∣∣
r⋃
i=1

S{i}

∣∣∣∣∣
=

r∑
k=1

(−1)k+1

 ∑
A⊆{1,...,r}

|A|=k

|SA|


=

r∑
k=1

(−1)k+1

(
r

k

)
|CG(r − k, r − k − d, u)|.

So, if we let g : Z≥0 → Z≥0 denote the function

g(r) = |CG(r, r − d, u)|,

we see that g(r) is determined by its values in 0, . . . , 2d − u and the recursive
formula

g(r) =

r∑
k=1

(−1)k+1

(
r

k

)
g(r − k).

Let fd,u be the unique polynomial in Q[x] of degree at most 2d − u that satisfies
fd,u(r) = g(r) for all 0 ≤ r ≤ 2d − u. Using Lemma 3.8.6 one can show that
fd,u satisfies the same recurrence relation as g does, and hence we conclude that
fd,u(r) = g(r) for all r ≥ 0.

Assume now that u = 0. Then fd,0(r) counts the number of contracted r-
marked graphs with no unmarked vertices of characteristic r−d (so the number of
edges equals d). Every graph with no unmarked vertices is contracted, so fd,0(r)
simply counts the number of ways we can put d edges in an r-marked graph with
no unmarked vertices. There are up to ordering 1

2r(r + 1) pairs of not necessarily
distinct vertices in such a graph. Therefore, fd,0(r) equals the number of multisets
of cardinality d with elements taken from a set of cardinality 1

2r(r+1). It follows
that

fd,0(r) =

(( 1
2r(r + 1)

d

))
=

( 1
2r(r + 1) + d− 1

d

)
.

After expanding the binomial coefficient, we see that fd,0(r) is a degree 2d poly-
nomial whose leading coefficient equals 1/(2d · d!).

Remark 3.8.7. The polynomials fd,u ∈ Q[x] are integer-valued. The coefficients
of fd,u, however, are not. By the theory of integer-valued polynomials (see, for
instance, [CC16]), we can write

fd,u =

2d−u∑
k=0

ck

(
x

k

)
,
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where c0, . . . , c2d−u are integers, defined recursively by the following formula:

ck = fd,u(k)−
k−1∑
j=0

cj

(
k

i

)
.

3.9 Computing closed formulas for |CG(r, r − d)|
In the previous section we proved that given nonnegative integers d, u there is a
polynomial fd,u of degree at most 2d− u such that for all r ≥ 0 one has

|CG(r, r − d, u)| = fd,u(r).

By Theorem 3.7.1 we then find for all d, r ≥ 0:

|CG(r, r − d)| = fd(r) :=

2d∑
u=0

fd,u(r).

In this section we will use Algorithm 3.7.3 to compute the polynomial fd for
low values of d. An implementation of this algorithm in Python 3 (along with
numerous optimizations to the ‘naive’ Algorithm 3.7.3) can be found in [vdLug21].

Using the algorithm, we can compute the polynomials fd,u and fd for all d ≤ 4
and u ≥ 0.

• d < 0: By Theorem 3.8.2 we have fd,u = 0 for all u ≥ 0, and hence fd = 0.
• d = 0: Theorem 3.8.2 implies that f0,u = 0 for all u > 0. We have f0,0 = 1

since there is a unique r-marked graph with no unmarked vertices and no
edges, and this graph is automatically contracted. We obtain f0 = 1.

• d = 1: Using our algorithm, we find the following values for f1,u(r) for
r + u ≤ 2:

r f1,0(r) f1,1(r) f1,2(r)

0 0 1 1
1 1 1
2 3

Lagrange interpolation gives us the following expressions for the polynomials
f1,u:

f1,0 = 1
2r

2 + 1
2r

f1,1 = 1

f1,2 = 1

By summing these polynomials, we find

f1 = 1
2r

2 + 1
2r + 2.

Note that this agrees with the formula for CG(r, r−1) we computed by hand
in Example 3.7.2.
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• d = 2: The algorithm produces the following values for f2,u(r) for r+u ≤ 4:

r f2,0(r) f2,1(r) f2,2(r) f2,3(r) f2,4(r)

0 0 1 4 3 3
1 1 5 8 4
2 6 13 14
3 21 26
4 55

By interpolation, we find the polynomial equations

f2,0 = 1
8r

4 + 1
4r

3 + 3
8r

2 + 1
4r

f2,1 = 1
6r

3 + 3
2r

2 + 7
3r + 1

f2,2 = r2 + 3r + 4

f2,3 = r + 3

f2,4 = 3.

Hence we obtain

f2 = 1
8r

4 + 5
12r

3 + 23
8 r

2 + 79
12r + 11.

• d = 3: We find the following values for f3,u(r) for r + u ≤ 6:

r f3,0(r) f3,1(r) f3,2(r) f3,3(r) f3,4(r) f3,5(r) f3,6(r)

0 0 1 7 18 23 15 9
1 1 10 33 49 44 20
2 10 51 104 106 73
3 56 176 257 197
4 220 475 541
5 680 1086
6 1771

Interpolation of the found data yields the following polynomial expressions.

f3,0 = 1
48r

6 + 1
16r

5 + 3
16r

4 + 13
48r

3 + 7
24r

2 + 1
6r

f3,1 = 1
12r

5 + 3
4r

4 + 25
12r

3 + 13
4 r

2 + 17
6 r + 1

f3,2 = 1
2r

4 + 19
6 r

3 + 19
2 r

2 + 77
6 r + 7

f3,3 = 4
3r

3 + 9r2 + 62
3 r + 18

f3,4 = 4r2 + 17r + 23

f3,5 = 5r + 15

f3,6 = 9

We therefore find that the number of contracted r-marked graphs of charac-
teristic r − 3 is equal to:

f3 = 1
48r

6 + 7
48r

5 + 23
16r

4 + 329
48 r

3 + 625
24 r

2 + 117
2 r + 73
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• d = 4: After a while the algorithm outputs the following values for f4,u(r)
for u+ r ≤ 8.

r f4,0(r) f4,1(r) f4,2(r) f4,3(r) f4,4(r) f4,5(r) f4,6(r) f4,7(r) f4,8(r)

0 0 1 11 47 123 172 160 79 32
1 1 16 93 257 425 423 282 105
2 15 136 496 948 1131 854 443
3 126 742 1897 2707 2513 1515
4 715 2971 5756 6485 4916
5 3060 9542 14 786 13 687
6 10 626 26 047 33 538
7 31 465 62 812
8 82 251

We therefore obtain the following polynomial expressions for f4,u(r):

f4,0 = 1
384r

8 + 1
96r

7 + 3
64r

6 + 5
48r

5 + 27
128r

4 + 25
96r

3 + 23
96r

2 + 1
8r

f4,1 = 1
48r

7 + 5
24r

6 + 101
120r

5 + 9
4r

4 + 63
16r

3 + 109
24 r

2 + 16
5 r + 1

f4,2 = 23
144r

6 + 73
48r

5 + 1013
144 r

4 + 875
48 r

3 + 1037
36 r2 + 105

4 r + 11

f4,3 = 3
4r

5 + 23
3 r

4 + 397
12 r

3 + 229
3 r2 + 553

6 r + 47

f4,4 = 73
24r

4 + 325
12 r

3 + 2387
24 r2 + 2069

12 r + 123

f4,5 = 25
3 r

3 + 65r2 + 533
3 r + 172

f4,6 = 39
2 r

2 + 205
2 r + 160

f4,7 = 26r + 79

f4,8 = 32

By summing these polynomials, we obtain the polynomial f4 that counts the
number of contracted r-marked graphs of characteristic r − 4.

f4 = 1
384r

8+ 1
32r

7+ 239
576r

6+ 193
60 r

5+ 23275
1152 r

4+ 8729
96 r3+ 84637

288 r2+ 24013
40 r+625

While our algorithm can quickly compute all values for fd,u(r) with u+ r ≤ 2d
for all d ≤ 3, it takes a very long time in the case d = 4 on the same server. We
observe the following runtimes:

d Runtime (s)

1 4.3× 10−4

2 2.3× 10−2

3 3.6
4 8.2× 103

It seems unlikely that f5 can be computed in reasonable time without significant
improvements to either the algorithm or the hardware.
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Chapter 4

Tautological differential forms
on moduli of curves

In this section we will establish a theory of tautological differential forms on fam-
ilies of curves, that is meant to give an analytic analogue to the theory of tau-
tological rings and tautological cohomology. We first discuss a suitable definition
for the rings of tautological forms. This definition, however, introduces exact tau-
tological forms that cannot be detected by cohomology; it follows that the rings
of tautological forms are ‘bigger’ than the rings of tautological classes. Next, we
will describe a combinatorial framework, using marked graphs, that allows us to
generate tautological forms, and prove that in fact all tautological forms can be
constructed in this way, thereby showing that the rings of tautological forms are
not ‘too big’. Finally, we describe a method for generating relations in the rings
of tautological forms and fully compute the degree 2 parts of these rings.

4.1 Tautological morphisms and submersions
Fix an integer g ≥ 2. In Chapter 2 we have defined the universal family p :
Cg → Mg of genus g curves. Although Mg and Cg are not complex manifolds but
merely differentiable stacks, we will often treat these spaces as if they were honest
manifolds. The reader should understand that statements about this universal
family of genus g curves can in that case be interpreted as statements that hold
universally among all families of genus g curves. In Chapter 2 we have clarified
this correspondence between statements for the universal family and universal
statements for families.

Let us briefly recall the tautological morphisms we constructed in Chapter 2.
Let f : C → S be a family of genus g curves. Recall that to each pair of integers
r, s ≥ 0 and each map of sets ϕ : {1, . . . , s} → {1, . . . , r} we have associated a
morphism

fϕ : Cr → Cs : (x1, . . . , xr) 7→ (xϕ(1), . . . , xϕ(s)),

where Cr and Cs denote the r-fold and s-fold fiber products of C over S. This
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morphism is a submersion if and only if ϕ is injective. Universally, we obtain a
morphism

fϕ : Crg → Csg
and morphisms of this form are called tautological morphisms. The tautological
morphism fϕ is a submersion if and only if ϕ is injective.

The following examples list some tautological morphisms that we will be using
often.

Example 4.1.1. The tautological morphism associated to the unique map
{1, 2} → {1} is the diagonal morphism ∆ : Cg → C2

g .

Example 4.1.2. The tautological submersion associated to the unique map ∅ →
{1, . . . , r} is the projection morphism Crg → Mg.

Example 4.1.3. If 1 ≤ i ≤ r is an integer, the map {1} → {1, . . . , r} given by
1 7→ i induces the map Crg → Cg that projects onto the ith coordinate. We denote
this map by pi.
More generally, if 1 ≤ i1, . . . , is ≤ r are integers, we denote by

pi1,...,is : Crg → Csg

the tautological morphism associated to ϕ : {1, . . . , s} → {1, . . . , r} : k 7→ ik.

Example 4.1.4. Let 1 ≤ i1 < · · · < is ≤ r be integers. Consider the unique in-
creasing map ϕ : {1, . . . , r−s} → {1, . . . , r} whose image is {1, . . . , r}\{i1, . . . , is}.
Denote by

p(i1,...,is) : C
r
g → Cr−sg

the tautological morphism associated to ϕ (notice the parentheses!). Then p(i1,...,is)
is the tautological submersion that ‘forgets the coordinates i1, . . . , is’. For instance,
the map p(2) : C2

g → Cg equals the map p1 : C2
g → Cg.

Consider a commutative diagram of sets, together with the associated diagram
of moduli stacks.

{1, . . . , u} {1, . . . , s}

{1, . . . , t} {1, . . . , r}

η

χ

ψ

ϕ

Cug Csg

Ctg Crg

fη

fχ fϕ

fψ

As we have seen in Section 2.4, the diagram of moduli stacks is cartesian if and
only if the diagram of sets is a pushout diagram. We will be using such cartesian
diagrams often.
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4.2 Tautological classes

This section serves as a short introduction to tautological rings of moduli spaces
of curves. We will recall the definition of the tautological ring R∗(Crg) of Crg , which
is a subring of the Chow ring CH∗(Crg) of Crg with rational coefficients.

Let g ≥ 2 be an integer, and consider the universal family p : Cg → Mg of genus
g curves. We let ωCg/Mg

denote the relative cotangent bundle, and K ∈ CH1(Cg)
its first Chern class in the Chow ring with rational coefficients. For d ≥ 0 we
define the dth Mumford–Morita–Miller class κd by

κd = p∗K
d+1 ∈ CHd(Mg).

The tautological ring on Mg, defined by Mumford [Mum83], is the sub-Q-algebra
R∗(Mg) ⊆ CH∗(Mg) generated by these κ-classes. Mumford proved that the
tautological ring is generated by the tautological classes κ1, . . . , κg−2. He also
proved that all Chern classes of the Hodge bundle p∗ωCg/Mg

lie in the tautological
ring.

The Chow ring and the tautological ring vanish in degrees higher than dim(Mg)
= 3g− 3. Looijenga [Loo95] proved the stronger statement that R∗(Mg) vanishes
in degrees higher than g − 2, and that Rg−2(Mg) is at most one-dimensional,
spanned by the class κg−2. Faber [Fab97] then proved that κg−2 is nonzero, so
Rg−2(Mg) is one-dimensional. Faber also conjectured that the tautological ring
is a Gorenstein algebra.

Conjecture 4.2.1 ([Fab99]). For any g ≥ 2 the following holds.

1. Rd(Mg) = 0 for d > g − 2;
2. Rg−2(Mg) ∼= Q;
3. Multiplication in the Chow ring gives a perfect pairing

Rd(Mg)×Rg−2−d(Mg) → Rg−2(Mg) ∼= Q

for all 0 ≤ d ≤ g − 2.

This conjecture has been verified by Faber [Fab13] for all g ≤ 23, but not
enough relations have been found in genus 24 to verify the conjecture there.

More generally, the tautological ring R∗(Crg) of Crg (introduced in [Loo95]) is
defined to be the Q-subalgebra of CH∗(Crg) generated by the following classes:

• the classes κd (obtained from Mg by pullback);
• the classes Ki = p∗iK for 1 ≤ i ≤ r;
• the diagonal classes ∆ij = p∗ij∆, with ∆ ⊆ C2

g the diagonal, for 1 ≤ i < j ≤ r.

Note that the classes Ki can also be defined as follows: if p(i) : Crg → Cr−1
g is the

projection map that forgets the ith coordinate, then Ki is the first Chern class of
the relative cotangent bundle of this projection.
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In the ring R∗(Crg) we have the relations:

∆ij∆jk = ∆ij∆ik

∆2
ij =−∆ijKi.

where i, j, k are pairwise distinct. If ∆ : Cg → C2
g denotes the diagonal map, we

have:
∆∗∆ = −K.

Looijenga proved in [Loo95] that R∗(Crg) vanishes in degree d > g + r − 2.
Using the above relations, one can deduce that the pullbacks along tautological

morphisms of tautological classes are again tautological classes. Moreover, it is
straightforward to verify using the above relations and the projection formula that
the pushforward of every tautological class along every tautological morphism is
a tautological class. In other words: the system of Q-algebras {R∗(Crg) : r ≥ 0} is
closed under pushforward and pullback along tautological morphisms. If {S∗(Crg) :
r ≥ 0} is another system of Q-subalgebras of the Chow rings that is closed under
pushforwards and pullbacks along tautological morphisms, then

∆ = ∆∗(1) ∈ S∗(C2
g )

K = −∆∗∆ ∈ S∗(Cg)
κd = p∗K

d+1 ∈ S∗(Mg).

It follows that the classes κd, Ki and ∆ij lie in S∗(Crg), and therefore R∗(Crg) ⊆
S∗(Crg). We obtain the following.

Proposition 4.2.2. The system of Q-subalgebras R∗(Crg) ⊆ CH∗(Crg) (with r ≥
0) is the smallest system of Q-subalgebras that is closed under pullbacks and
pushforwards along tautological morphisms.

In fact, we can slightly rephrase this proposition to the following. It will be
this formulation that allows us to translate the language of tautological classes to
a language of tautological differential forms.

Proposition 4.2.3. The system of Q-subalgebras R∗(Crg) ⊆ CH∗(Crg) (with r ≥ 0)
satisfies:

1. ∆ ∈ R∗(C2
g );

2. the system is closed under pullbacks along tautological morphisms;
3. the system is closed under pushforwards along tautological submersions;
4. the system is the smallest system that satisfies 1–3.

Analogously, the tautological cohomology ring RH∗(Crg) is a subring of the
cohomology ring of Crg with rational coefficients. It is defined as the image of the
canonical map

R∗(Crg) → H2∗(Crg ,Q).
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Notice that the grading on cohomology is twice the grading in the Chow ring,
and that the tautological cohomology ring does not contain any odd-degree coho-
mology classes. So far, it seems to be unknown whether the canonical map from
tautological Chow classes to tautological cohomology classes is an isomorphism.

We will define a third tautological ring of a more analytical nature, the ring
of tautological differential forms, which is a subring of the ring of real differential
forms on Crg . These forms will be closed differential forms and we can take their
cohomology classes in H∗(Crg ,R). When we compare rings of tautological differ-
ential forms with tautological cohomology rings, we should consider cohomology
with real coefficients.

4.3 Rings of tautological differential forms
Fix an integer g ≥ 2. In Section 4.2 we have seen that there are multiple equivalent
ways to define the rings of tautological Chow or cohomology classes on the moduli
stacks Crg . A priori, these rings are defined to be the sub-Q-algebras of the Chow
or cohomology rings that are generated by the classes ∆ij , Ki and κd, and Propo-
sitions 4.2.2 and 4.2.3 yield two more equivalent definitions. In this section, we will
attempt to translate these definitions to an analytical setting. Rather than Chern
or cohomology classes, we will consider differential forms. Of the three equivalent
definitions for the ring of tautological forms given in Section 4.2, the one given by
Proposition 4.2.3 can be translated directly to the analytical setting, and we will
be using this translation to define rings of tautological differential forms on the
moduli stacks Crg .

Let us endow the line bundle O(∆) on C2
g with its canonical metric (see Section

1.4), and take the first Chern form of the resulting hermitian bundle to obtain a
closed real 2-form

h = c1(O(∆))

on C2
g that represents the diagonal. Let ω = ωCg/Mg

be the relative cotangent
bundle of the universal family of genus g curves Cg → Mg, endowed with its
canonical metric; recall from Section 1.4 that we have a canonical isometry

ω⊗−1 ≃ ∆∗O(∆)

of hermitian vector bundles on Cg. We therefore have

c1(ω) = −∆∗c1(O(∆)) = −eA ∈ A2(Cg)

where eA is defined to be the first Chern form of the relative tangent bundle

TCg/Mg
≃ ω⊗−1 ≃ ∆∗O(∆)

with the metric induced by the canonical metric on ω.
Recall that in the Chow ring CH∗(Mg) we have constructed the kappa-classes

κd by pushing forward powers of the canonical class K on Cg along the universal
family Cg → Mg. Analogously we define forms eAd ∈ A2d(Mg) for all d ≥ 0 by

eAd :=

∫
Cg/Mg

(eA)d+1.

97



Chapter 4: Tautological differential forms on moduli of curves

4

Let us consider the sub-R-algebras of A∗(Crg) generated by forms p∗ijh, p∗i eA

and eAd . Certainly, we want to consider forms in these rings to be tautological.
However, a problem arises: this system of rings is not closed under fiber integrals
along projection maps. For instance, consider the differential form

ν :=

∫
C2
g/Mg

h3 ∈ A2(Mg).

We have [dJon16]:

ν − eA1 =
∂∂φ

π
√
−1

,

where φ ∈ A0(Mg) is the Kawazumi-Zhang invariant, introduced by Kawazumi
[Kaw08; Kaw09] and Zhang [Zha10] in different contexts. Later we will see that
for g ≥ 3 the forms ν and eA1 are linearly independent (whereas for g = 2 there is a
linear relation), and thus we find that ν is not in the subring of A∗(Mg) generated
by the classes eAd for all g ≥ 3.

A second problem is the fact that, in the context of differential forms, proper
pushforwards or fiber integrals can only be taken along submersions. While the
tautological class ∆ on C2

g can be obtained by taking the pushforward of 1 along
the diagonal map Cg → C2

g , we can not obtain the corresponding form h in an
analogous way.

The following definition, based on Proposition 4.2.3, solves both our problems.

Definition 4.3.1. The rings of tautological forms R∗(Crg) (r ≥ 0) are the unique
sub-R-algebras R∗(Crg) ⊆ A∗(Crg) such that the following holds:

1. h ∈ R∗(C2
g );

2. If f : Crg → Csg is a tautological morphism, then f∗(R∗(Csg)) ⊆ R∗(Crg);
3. If f : Crg → Csg is a tautological submersion, then

∫
f
(R∗(Crg)) ⊆ R∗(Csg);

4. R∗(Crg) are minimal: if S∗(Crg) ⊆ A∗(Crg) (r ≥ 0) is another collection of
sub-R-algebras that satisfies 1–3, then R∗(Crg) ⊆ S∗(Crg) for all r ≥ 0.

Elements of these rings are called tautological (differential) forms.

Notice that this definition implies that there are no tautological forms of odd
degree. Indeed, taking pullbacks and fiber integrals of differential forms along
morphisms of complex manifolds changes the degrees of these differential forms by
an even number; see Proposition 1.3.19. It follows that removing the summands
of odd degree from the rings

R∗(Crg) =
⊕
d≥0

Rd(Crg)

still yields a system that satisfies properties 1–3, which is smaller than, and hence
equal to, the system of tautological differential forms.

Definition 4.3.1 implies that eA = ∆∗h is a tautological form on Cg, and eAd =∫
p
(eA)d+1 is a tautological form on Mg for all d ≥ 0. It follows that passing to
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cohomology yields a surjective map

R∗(Crg) → RH∗(Crg)⊗Q R.

However, as opposed to the settings of Chow rings and cohomology rings, the
tautological rings are not generated by pullbacks of classes h, eA and eAd . For
instance, the real 2-form

∂∂φ

π
√
−1

is a tautological form on Mg that is not in the subring generated by the eAd if
g ≥ 3. Such ‘extra’ tautological forms are introduced by the homogeneous ideal
I∗(Crg) of exact tautological forms:

0 → I∗(Crg) → R∗(Crg) → RH∗(Crg)⊗Q R → 0.

By Looijenga’s result [Loo95] we know that all tautological forms of degree d >
2(g + r − 2) are exact.

Of particular interest is the degree 2 part

I2(Mg) ⊆ I∗(Mg).

If g ≥ 3 then exact forms in this space can be written in the form

∂∂α

π
√
−1

with α a real-valued smooth function on Mg defined uniquely up to an additive
constant; see [Kaw09, Lemma 8.1]. For example, the Kawazumi–Zhang invariant φ
arises from the exact tautological form ν−eA1 in this way. One might wonder if it is
possible to obtain more such invariants for genus g curves from exact tautological
2-forms on Mg. As it will turn out, this is not the case. In Corollary 4.8.4 we will
find that I2(Mg) is spanned by

∂∂φ

π
√
−1

,

and that the Kawazumi–Zhang invariant is the only invariant, up to additive and
multiplicative constants, that arises in this way.

Next, we will prove some elementary equalities of tautological differential forms,
which we will use in the proof of Proposition 4.6.2.

Lemma 4.3.2. Let p : Cg → Mg be the universal family of genus g curves, and
let eA be the first Chern form of the relative tangent bundle TCg/Mg

≃ ω⊗−1 with
its canonical metric. Then ∫

p

eA = 2− 2g ∈ A0(Mg).

Proof. Recall that the cotangent bundle of any genus g curve has degree 2g − 2.
Applying Lemma 1.4.10 therefore gives the desired result.

99



Chapter 4: Tautological differential forms on moduli of curves

4

Lemma 4.3.3. Consider the tautological submersion p1 : C2
g → Cg. Then∫

p1

h = 1 ∈ A0(Cg).

Proof. This identity, too, follows immediately from Lemma 1.4.10.

Lemma 4.3.4. Consider the tautological submersion p1 : C2
g → Cg. If L is a

hermitian line bundle on C2
g which is fiberwise admissible with respect to p1, then∫

p1

h ∧ c1(L) = ∆∗c1(L) ∈ A2(Cg).

In particular, we have: ∫
p1

h2 = eA

and for i = 1, 2 we have ∫
p1

h ∧ p∗i eA = eA.

Proof. From Proposition 1.4.13 we obtain∫
p1

h ∧ c1(L) =
∫
p1

c1(O(∆)) ∧ c1(L) = c1(⟨O(∆), L⟩p1) = c1(∆
∗L) = ∆∗c1(L),

where the third equality follows from the fact that the canonical metric on O(∆)
has the useful property that the canonical isomorphism

⟨O(∆), L⟩p1
∼−→ ∆∗L

is an isometry; see Section 1.4. The other identities now follow from:

h = c1(O(∆)), and p∗i e
A = p∗i c1(ω

⊗−1) = c1(p
∗
iω

⊗−1).

Lemma 4.3.5. Let p12, p13, p23 : C3
g → C2

g be the three tautological submersions.
Then ∫

p12

p∗13h ∧ p∗23h = h ∈ A2(C2
g ).

Proof. Let σ1, σ2 : C2
g → C3

g be the two canonical sections of p12, such that p3◦σi =
pi : C2

g → Cg for i = 1, 2. Notice that p13 ◦ σ2 : C2
g → C2

g is the identity. Endow
the induced line bundles O(σ1), O(σ2) on C3

g with their canonical metrics. We use
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Proposition 1.4.13 to obtain∫
p12

p∗13h ∧ p∗23h =

∫
p12

p∗13c1(O(∆)) ∧ p∗23c1(O(∆))

=

∫
p12

c1(O(σ1)) ∧ c1(O(σ2))

= c1(⟨O(σ1), O(σ2)⟩p1)
= σ∗

2c1(O(σ1))

= σ∗
2p

∗
13c1(O(∆))

= c1(O(∆))

= h.

Recall from Section 1.4 that for each family f : C → S of genus g curves with
Jacobian family J → S we have canonical morphisms κ : C → J and δ : C2 → J .
The morphism κ takes a point x in a fiber Cs and maps it to the class of the
degree 0 line bundle O((2g− 2)x)⊗ω⊗−1

Cs in Js = Jac(Cs). The morphism δ is the
Abel–Jacobi morphism: it maps a pair (x, y) ∈ C2

s to the class of the line bundle
O(y − x) in Js = Jac(Cs).

Universally we obtain morphisms κ : Cg → Jg and δ : C2
g → Jg. Recall from

Section 2.7 that on the universal Jacobian Jg we have constructed a canonical
hermitian line bundle B. We denote by 2ω0 the first Chern form of B. As the form
2ω0 and the morphisms κ, δ are completely canonical, it makes sense to expect
that the forms 2κ∗ω0 and 2δ∗ω0 are tautological. Indeed, this is the case, as the
following proposition shows.

Proposition 4.3.6. The forms κ∗ω0 ∈ A2(Cg) and δ∗ω0 ∈ A2(C2
g ) are tautologi-

cal. More precisely, we have the following identities of 2-forms:

−2κ∗ω0 = 2g(2g − 2)eA + p∗eA1

−2δ∗ω0 = p∗1e
A + p∗2e

A − 2h.

Note that these identities match identities (K1) and (K3) in [dJon16, Theorem
1.4].

Proof. Denote by p : Cg → Mg the universal family of genus g curves. Recall from
Proposition 1.4.15 that we have canonical isometries

κ∗B⊗−1 ≃ ω−2g(2g−2) ⊗ p∗⟨ω, ω⟩p
δ∗B⊗−1 ≃ p∗1ω

⊗−1 ⊗ p∗2ω
⊗−1 ⊗O(∆)⊗−2

Taking first Chern classes and applying Proposition 1.4.13 then yields the desired
result.

One could argue, in fact, that the 2-form 2δ∗ω0 is the ‘prototypical’ tautological
form on C2

g , more so than h, and replace h by 2δ∗ω0 in Definition 4.3.1. We
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claim that this does not affect the resulting system of tautological rings. Indeed,
Proposition 4.3.6 states that 2δ∗ω0 is tautological. Conversely, it is possible to
obtain h from 2δ∗ω0 by using pullbacks and fiber integrals as follows. Squaring
−2δ∗ω0 = p∗1e

A+p∗2e
A−2h and integrating the result along the fibers of p1 : C2

g →
Cg yields: ∫

p1

(−2δ∗ω0)
2 =

∫
p1

c1(δ
∗B⊗−1)2 = c1(

〈
B⊗−1,B⊗−1

〉
p1
)

= c1(ω
⊗4g ⊗ p∗⟨ω, ω⟩p) = −4geA + p∗eA1 ,

where the second and third equalities follow from Propositions 1.4.13 and 1.4.15,
respectively. Squaring the resulting form and integrating it along the fibers of
p : Cg → Mg then gives:∫

p

(−4geA + p∗eA1 )
2 =

∫
p

(16g2(eA)2 − 8geA ∧ p∗eA1 + p∗(eA1 )
2)

We have: ∫
p

16g2(eA)2 = 16g2eA1 ,

and applying the projection formula and Lemma 4.3.2 yields∫
p

−8geA ∧ p∗eA1 = −8geA1 ∧
∫
p

eA = −8g(2− 2g)eA1 .

Another application of the projection formula gives∫
p

p∗(eA1 )
2 = (eA1 )

2

∫
p

1 = 0.

We conclude: ∫
p

(−4geA + p∗eA1 )
2 = 16g(2g − 1)eA1 .

We thus find that we can obtain eA1 , eA, and finally h from 2δ∗ω0 by taking fiber
integrals and pullbacks.

4.4 Tautological forms associated to marked graphs
Now that we have defined the rings of tautological forms, we need a method to
generate lots of tautological forms in order to be able to study relations of these
forms. We can start with some ‘basic’ tautological forms like h and eA and take
pullbacks, fiber integrals, and wedge products in order to generate more tautolog-
ical forms. The theory of marked graphs gives us a combinatorial framework for
generating such forms, and it will turn out that this framework is able to give us
all tautological forms.

In this section, we fix an integer g ≥ 2, and we will describe an operation that
takes an r-marked graph and outputs a tautological form on Crg .
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Let Γ = (V,E,m) be an r-marked graph, and let u be the number of unmarked
vertices of Γ. Choose a bijective extension

m̄ : {1, . . . , r + u} ∼−→ V

of the marking m : {1, . . . , r} → V . We will define a differential form µΓ on Cr+ug

that will depend on the choice of this extension m̄.
First, we associate to every edge e ∈ E a 2-form he on Cr+ug . This form is

defined as follows. Suppose that the endpoints of e are m̄(i) and m̄(j). We define

he = p∗i,jh ∈ R2(Cr+ug ),

where pi,j : Cr+ug → C2
g is the projection on the ith and jth coordinate. If e is a

loop based at vertex m̄(i), then

he = p∗i,ih = p∗i∆
∗h = p∗i e

A,

where pi : Cr+ug → Cg is the projection on the ith coordinate, and ∆ : Cg → C2
g is

the diagonal morphism. Notice that he does not depend on the order of i and j
as the form h is symmetric in the two coordinates of C2

g .
Now, we let µΓ denote the product of all these 2-forms:

µΓ =
∧
e∈E

he ∈ R2|E|(Cr+ug ).

This form depends on the choice of m̄. However, the form obtained from a different
choice of m̄ only differs from µΓ by permutation of the last u coordinates of Cr+ug .
Therefore, by Fubini’s theorem, the fiber integral

αΓ :=

∫
p1,...,r:Cr+ug →Crg

µΓ ∈ R2(|E|−u)(Crg) (4.4.1)

does not depend on the choice of m̄.

Definition 4.4.2. Let Γ be an r-marked graph. The form αΓ on Crg defined in
Equation 4.4.1 is the (tautological) form associated to Γ.

As the following examples show, many of the tautological differential forms we
found before can be expressed as tautological forms associated to marked graphs.

Example 4.4.3. Consider the unique 2-marked graph Γ with no unmarked ver-
tices and a single edge between the two marked vertices. The associated 2-form
αΓ on C2

g is h.

Γ =
1 2
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Example 4.4.4. Consider the unique 1-marked graph Γ with no unmarked ver-
tices and a single loop based at the unique vertex of Γ. The associated 2-form αΓ

on Cg is ∆∗h = eA.

Γ =
1

Example 4.4.5. Consider the two 0-marked graphs in the following picture.

Γ1 = Γ2 =

The associated forms on Mg are

αΓ1
=

∫
C2
g/Mg

h3 =: ν

and

αΓ2
=

∫
C2
g/Mg

h ∧ p∗1eA ∧ p∗2eA

=

∫
Cg/Mg

∫
p1:C2

g→Cg
h ∧ p∗1eA ∧ p∗2eA

=

∫
Cg/Mg

(
eA ∧

∫
p1

h ∧ p∗2eA
)

=

∫
Cg/Mg

(eA)2

= eA1 ,

where we have used the projection formula and Lemma 4.3.4. We therefore see
that the tautological form

∂∂φ

π
√
−1

= ν − eA1 ,

while not being associated to a graph itself, is in the linear span of forms on Mg

associated to 0-marked graphs.

In the next section we will prove that, in fact, every tautological form on Crg
can be written as the linear combination of forms associated to r-marked graphs.
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4.5 Graph operations and tautological forms
In the previous section we introduced a combinatorial method of defining tauto-
logical forms on Crg for all r ≥ 0 by associating them to r-marked graphs.

In this section we will study the various operations on marked graphs intro-
duced in Chapter 3 and observe how the corresponding differential forms are af-
fected. It turns out that these forms behave rather nicely with respect to pullbacks,
pushforwards, and coproducts of marked graphs. By using this fact, we will be
able to prove the following theorem.

Theorem 4.5.1. For every integer r ≥ 0, the ring of tautological differential
forms R∗(Crg) is spanned as an R-vector space by forms αΓ associated to r-marked
graphs Γ.

By Definition 4.3.1 it suffices to prove that the system of linear subspaces
S∗(Crg) ⊆ R∗(Crg) generated by forms associated to r-marked graphs is a system
of sub-R-algebras (that is: closed under wedge products and containing 1), that
the system is closed under pullbacks and fiber integrals, and that h is contained
in S∗(C2

g ).
We start by proving that S∗(Crg) ⊆ R∗(Crg) is a subring for every r ≥ 0. First

of all, the form associated to the unique r-marked graph consisting of r vertices
and no edges is 1. The following proposition implies that S∗(Crg) is closed under
wedge products and therefore a subring of R∗(Crg).

Proposition 4.5.2. Let Γ = (V,E,m) and Γ′ = (V ′, E′,m′) be two r-marked
graphs, and let αΓ and αΓ′ be the associated tautological forms on Crg . Then

αΓ ∧ αΓ′ = αΓ⊔rΓ′ .

Proof. Assume that Γ and Γ′ have respectively u and u′ unmarked vertices. Choose
bijective extensions

m̄ : {1, . . . , r + u} ∼−→ V

m̄′ : {1, . . . , r + u′} ∼−→ V ′

of m and m′. Let ϕ : {1, . . . , r + u} → {1, . . . , r + u + u′} be the inclusion, and
define the map

ψ : {1, . . . , r + u′} → {1, . . . , r + u+ u′} : k 7→

{
k if k ≤ r

k + u if k > r.

It follows that the diagram

{1, . . . , r + u+ u′} {1, . . . , r + u}

{1, . . . , r + u′} {1, . . . , r}

ϕ

ψ
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is a pushout diagram of sets, so we have the associated cartesian diagram of moduli
stacks

Cr+u+u′

g Cr+ug

Cr+u′

g Crg .

p1,...,r+u

p1,...,r,r+u+1,...,r+u+u′ p1,...,r

p1,...,r

Now let Γ′′ = (V ′′, E′′,m′′) = Γ ⊔r Γ′. By the universal property of the pushout,
we have an induced r + u+ u′-marking

m̄′′ : {1, . . . , r + u+ u′} ∼−→ V ′′

of the set of vertices V ′′ of Γ′′ that extends m′′. If e ∈ E is an edge in Γ between
vertices m̄(i) and m̄(j), then the corresponding edge in Γ′′ has endpoints m̄′′(ϕ(i))
and m̄′′(ϕ(j)). Similarly, if e ∈ E′ is an edge in Γ′ between vertices m̄′(i) and
m̄′(j), then the corresponding edge in Γ′′ has endpoints m̄′′(ψ(i)) and m̄′′(ψ(j)).
It follows that

µΓ′′ =
∧
e∈E′′

he

=
∧
e∈E

p∗1,...,r+uhe ∧
∧
e∈E′

p∗1,...,r,r+u+1,...,r+u+u′he

= p∗1,...,r+uµΓ ∧ p∗1,...,r,r+u+1,...,r+u+u′µΓ′ .

Using the base change formula 1.3.14 and the projection formula 1.3.1, we find
that the fiber integral αΓ⊔rΓ′ equals αΓ ∧ αΓ′ .

Next, we will show that the system of vector spaces S∗(Crg) ⊆ R∗(Crg) is closed
under pullbacks along tautological morphisms. Let fϕ : Crg → Csg be a tautological
morphism, induced by a map ϕ : {1, . . . , s} → {1, . . . , r}. Recall from Chapter
3 that ϕ induces a pushforward operator ϕ∗ : Gr → Gs from r-marked graphs to
s-marked graphs. The following proposition implies that the pullback map fϕ,∗

on differential forms is compatible with the pushforward map on graphs. From
this one easily deduces that the system of forms S∗(Crg) is closed under pullbacks
along tautological maps.

Proposition 4.5.3. Let fϕ : Crg → Csg be the tautological morphism associated
to a map ϕ : {1, . . . , s} → {1, . . . , r}. Suppose that αΓ ∈ S∗(Csg) is the form
associated to an s-marked graph Γ. Then

fϕ,∗αΓ = αϕ∗Γ

with ϕ∗Γ the pushforward of Γ along ϕ.

Proof. The proof is similar to the proof of Proposition 4.5.2, so only a short sketch
is given here. We extend the labeling on Γ to an (s+u)-labeling, with u the number
of unmarked vertices of Γ. This induces an (r + u)-labeling of ϕ∗Γ, and it follows
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that the pullback of µΓ along the induced map Cr+ug → Cs+ug equals µϕ∗Γ. By the
base change formula the desired result follows.

Now, let fϕ : Crg → Csg be a tautological submersion, associated to an injective
map ϕ : {1, . . . , s} ↪→ {1, . . . , r}. In Chapter 3 we introduced a pullback map ϕ∗ :
Gr → Gs. The following proposition shows that, analogously to the pushforward
map, the pullback map on graphs is compatible with the fiber integral map on
differential forms. This implies that the system S∗(Crg) ⊆ R∗(Crg) is closed under
fiber integrals.

Proposition 4.5.4. Let ϕ : {1, . . . , s} → {1, . . . , r} be an injective map, and
let fϕ : Crg → Csg be the associated tautological submersion. Let Γ ∈ Gr be an
r-marked graph, and let ϕ∗Γ be the s-marked graph induced by ϕ. Then∫

fϕ
αΓ = αϕ∗Γ

Proof. Let u be the number of unmarked vertices in Γ. Extend the inclusion
ϕ : {1, . . . , s} → {1, . . . , r} to a permutation {1, . . . , r} → {1, . . . , r}, and then join
this map with the identity on {r + 1, . . . , r + u} to obtain a bijective map

ϕ̄ : {1, . . . , r + u} ∼−→ {1, . . . , r + u}

that extends ϕ.
Moreover, choose a bijective extension m̄ : {1, . . . , r+ u} ∼−→ V of the marking

m of Γ. We immediately obtain an extension

mϕ = m̄ ◦ ϕ̄ : {1, . . . , r + u} ∼−→ V

of the marking mϕ of the s-marked graph ϕ∗Γ = (V,E,mϕ). We have a commu-
tative diagram of sets, inducing a commutative diagram of moduli stacks:

{1, . . . , r + u} {1, . . . , r}

{1, . . . , r + u} {1, . . . , s}

⊇

ϕ̄

⊇

ϕ

Cr+ug Crg

Cr+ug Csg

p1,...,r

f ϕ̄ fϕ

p1,...,s

If e is an edge in Γ with endpoints m̄(i), m̄(j), then the corresponding edge
ϕ∗e in ϕ∗Γ has endpoints mϕ(ϕ̄−1(i)) and mϕ(ϕ̄−1(j)). It follows that the corre-
sponding 2-forms on Cr+ug are related as follows:

he = f ϕ̄,∗hϕ∗e.

From this, we find that
µΓ = f ϕ̄,∗µϕ∗Γ,

so
µϕ∗Γ =

∫
f ϕ̄
µΓ.
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We therefore have:∫
fϕ
αΓ =

∫
fϕ

∫
p1,...,r

µΓ =

∫
p1,...,s

∫
f ϕ̄
µΓ =

∫
p1,...,s

µϕ∗Γ = αϕ∗Γ,

proving the proposition.

We have seen that differential forms associated to graphs are quite well-behaved
with respect to the graph operations defined in Chapter 3. Using this, we can quite
easily prove the main theorem of this section.

Proof of Theorem 4.5.1. By Proposition 4.5.2, and the fact that the form associ-
ated to the r-marked graph with no edges and no unmarked vertices equals 1, we
find that the subspaces S∗(Crg) ⊆ R∗(Crg) are, in fact, sub-R-algebras. Propositions
4.5.3 and 4.5.4 show that the system of subspaces S∗(Crg) ⊆ R∗(Crg) is closed under
taking pullbacks along tautological morphisms and fiber integrals along tautolog-
ical submersions. Example 4.4.3 shows that h is an element of S2(C2

g ).
But as the system of rings R∗(Crg) is defined in Definition 4.3.1 to be the

smallest system that satisfies these properties, we find that the two systems must
be equal.

4.6 Graph contractions and tautological forms
In the last section, we proved that every tautological form is a linear combination
of tautological forms associated to graphs. We did so by observing the behavior
of the resulting tautological forms when manipulating the marked graphs using
the pushforward, pullback, and gluing operations in Chapter 3. In Section 3.6
we defined contraction operations on r-marked graphs. In this section we will
show that these contractions are well-behaved with respect to taking associated
tautological forms. This will allow us to prove the following theorem.

Theorem 4.6.1. For all r ≥ 0 and g ≥ 2, the ring of tautological forms R∗(Crg)
is finite-dimensional.

In the following proposition, we consider the various graph contraction opera-
tions defined in Chapter 3, and see how contracting vertices on an r-marked graph
Γ influences the associated tautological form αΓ. The proposition will be proved
at the end of this section.

Proposition 4.6.2. Let Γ = (V,E,m) be an r-marked graph, and suppose that
Γ has an unmarked vertex v, such that either deg(v) ≤ 2, or deg(v) = 3 and v is
incident to precisely two edges. Let Γ′ be the graph obtained from Γ by contracting
v.

0. If deg v = 0, then αΓ = 0.
1. If deg v = 1, then αΓ = αΓ′ .

2a. Suppose that deg v = 2 and that v has two distinct neighbors w ̸= w′. Then
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αΓ = αΓ′ .
2b. Suppose that deg v = 2 and that v has a single neighbor w ̸= v. Then

αΓ = αΓ′ .
2c. Suppose that deg v = 2 and that v is its own neighbor; that is: there is a

loop based at v. Then αΓ = (2− 2g)αΓ′ .
3. Suppose that deg v = 3 and that v is incident to precisely two edges. Then
αΓ = αΓ′ .

Proposition 4.6.2 shows that we can contract every r-marked graph to a con-
tracted r-marked graph while leaving the resulting tautological form the same up
to multiplication by zero or a power of (2− 2g). Therefore, we find that the ring
of tautological forms R∗(Crg) is the linear span of the tautological forms associated
to contracted r-marked graphs.

Suppose that Γ is an r-marked graph with u unmarked vertices and e edges.
The Euler characteristic of Γ is χ(Γ) = r+u−e. After extending the marking of Γ
to an (r+u)-marking, we obtain the form µΓ that lives on Cr+ug and has degree 2e.
Now αΓ is the fiber integral of µΓ along the projection Cr+ug → Crg , whose fibers
are of real dimension 2u, and hence the degree of αΓ is 2e− 2u = 2r− 2χ(Γ). We
obtain the following.

Lemma 4.6.3. Let d ≥ 0 and r ≥ 0 be integers. The space R2d(Crg) of tautological
forms of degree 2d on Crg is the linear span of the forms αΓ associated to contracted
r-marked graphs Γ with Euler characteristic χ(Γ) = r − d.

In Theorem 3.7.1, we proved that there are (up to isomorphism) only finitely
many contracted r-marked graphs of any given characteristic χ ∈ Z. By combining
Lemma 4.6.3 with Theorem 3.7.1, we obtain the following.

Theorem 4.6.4. Let g ≥ 2. For all integers r ≥ 0 and d ≥ 0, the space R2d(Crg)
of tautological forms of degree 2d on Crg is finite-dimensional. More precisely:
the space R2d(Crg) is spanned by forms αΓ, where Γ ranges over all contracted
r-marked graphs of characteristic r − d. These graphs have at most 2d unmarked
vertices, and there are only finitely many such graphs up to isomorphism.

The main theorem of this section is now a simple consequence of the previous
theorem.

Proof of Theorem 4.6.1. Recall from Section 2.5 that there exists an inclusion
A∗(Crg) → A∗(X r

g ) where Xg → Tg is the universal family of genus g curves with
Teichmüller structure and X r

g denotes the r-fold fiber product of Xg over Tg. As
X r
g is a manifold of (real) dimension 6g − 6 + 2r, it follows that Ad(X r

g ) is zero
for all d > 2r + 6g − 6, and the same is true for Ad(Crg) and hence for Rd(Crg).
Moreover, the odd-degree subspaces R2d+1(Crg) are zero. Therefore

R∗(Crg) =
⊕
d≥0

R∗(Crg) =
3g−3+r⊕
d=0

R2d(Crg)
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is a direct sum of finitely many finite-dimensional subspaces, and therefore it is
itself finite-dimensional.

We devote the remainder of this section to proving Proposition 4.6.2. The
proof is merely technical, and does not introduce any new concepts.

Proof of Proposition 4.6.2. Let Γ = (V,E,m) be an r-marked graph, and let v be
an unmarked vertex of degree ≤ 2, or an unmarked vertex of degree ≤ 3 with a
loop. Define a graph Γ′′ by removing v, and all edges emanating from v, from Γ.
Moreover, we have the graph Γ′ that is obtained from Γ by contracting v.

The graph Γ′′ represents an ‘intermediate step’ in obtaining Γ′ from Γ. The
following picture describes the situation in the case where v has two distinct neigh-
bors.

w

v

w′
Γ

w w′
Γ′′

w w′
Γ′

Let u ≥ 0 be such that Γ has u + 1 unmarked points. Fix an extension of m
to an (r + u+ 1)-marking

m̄ : {1, . . . , r + u+ 1} ∼−→ V,

such that m̄(r + u+ 1) = v.
Restricting m̄ to {1, . . . , r + u} induces an (r + u)-marking on Γ′ and Γ′′ that

extends the r-marking on these graphs. We obtain differential forms µΓ, µΓ′ , and
µΓ′′ that live on Cr+u+1

g , Cr+ug , and Cr+ug , respectively.
The inclusions {1, . . . , r} ⊆ {1, . . . , r+u} ⊆ {1, . . . , r+u+1} induce tautological

submersions
Cr+u+1
g Cr+ug

Crg

q

pq
p

We have
αΓ =

∫
pq

µΓ and αΓ′ =

∫
p

µΓ′

If we can prove that ∫q µΓ = 0 in case 0, ∫q µΓ = µΓ′ in cases 1, 2a, 2b, and 3, and
∫q µΓ = (2− 2g)µΓ′ in case 2c, we are done.

0. Suppose v has degree 0. The set of edges of Γ is equal to the set of edges of
Γ′, so we obtain

µΓ = q∗µΓ′ .

Taking fiber integrals and applying the projection formula yields:∫
q

µΓ = µΓ′

∫
q

1 = 0,

and we find that αΓ = 0.
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1. Suppose v has degree 1; let i ∈ {1, . . . , r + u} be such that m̄(i) is the
neighbor of v. The graph Γ is obtained from Γ′ by adding the vertex v and
the edge between v and m̄(i). We therefore have:

µΓ = q∗µΓ′ ∧ p∗i,r+u+1h,

so ∫
q

µΓ = µΓ′ ∧
∫
q

p∗i,r+u+1h.

By using the base change formula with the cartesian diagram

Cr+u+1
g C2

g

Cr+ug Cg,
□

pi,r+u+1

q p1

pi

we find: ∫
q

p∗i,r+u+1h = p∗i

∫
p1

h = 1,

where the latter equality follows from Lemma 4.3.3. This shows that ∫q µΓ =
µΓ′ , so αΓ = αΓ′ .

2a. Suppose v has degree 2, and that v has two distinct neighbors w and w′. Let
i, j ∈ {1, . . . , r + u} be such that m̄(i) = w and m̄(j) = w′. In this case, we
find

µΓ = µΓ′′ ∧ p∗i,r+u+1h ∧ p∗j,r+u+1h,

and
µΓ′ = µΓ′′ ∧ p∗i,jh.

In this case, another application of the base change formula, together with
the identity of forms ∫

p12

p∗13h ∧ p∗23h = h

from Lemma 4.3.5 shows that
∫
q
µΓ = µΓ′ , and hence αΓ = αΓ′ .

2b. The proof in this case is very similar to the proofs for cases 1 and 2. In this
case, we use the identity ∫

p1

h2 = eA

from Lemma 4.3.4.
2c. Again, the proof of this case is similar to that of the previous cases. The

identity used here is ∫
Cg/Mg

eA = (2− 2g),

see Lemma 4.3.2.
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3. Finally, the proof in case 3 is analogous to that of earlier cases, where we
use the identity ∫

p1

h ∧ p∗2eA = eA

from Lemma 4.3.4.

4.7 The ring of tautological forms as a quotient
algebra

In the previous sections we proved that the ring of tautological forms R∗(Crg) is the
linear span of forms associated to r-marked graphs. In this section we will exploit
this and show that we can write the ring of tautological forms R∗(Crg) as a quotient
algebra of a graded R-algebra whose summands are effectively computable.

Recall from Chapter 3 that G(r) denotes the set of isomorphism classes of r-
marked graphs. The coproduct ⊔r on the category Gr of r-marked graphs induces a
binary operator on G(r), which gives G(r) the structure of a commutative monoid.
There is a homomorphism of monoids

χ̄r : G(r) → Z : Γ 7→ r − χ(Γ).

If d ∈ Z is an integer, the inverse image χ̄−1
r (d) is the set

G(r, r − d) = {r-marked graphs of characteristic r − d}/∼=.

The monoid ring of G(r) over R is the R-algebra

R[G(r)]

that has as the underlying R-module the vector space with the elements of G(r) as
its basis, and whose multiplication is defined uniquely by demanding it extends the
binary operator on G(r), where we view G(r) as a subset of R[G(r)] via the map
Γ 7→ 1 · Γ. The homomorphism χ̄r : G(r) → Z and the corresponding partition
of G(r) induce a grading on R[G(r)] whose degree d summand is spanned by the
graphs of characteristic r − d:

R[G(r)] =
⊕
d∈Z

R[G(r, r − d)].

The method described in Section 4.4 of taking a graph Γ ∈ G(r) and assigning
to it a tautological form αΓ ∈ R∗(Crg) induces a map of sets G(r) → R∗(Crg). This
map is in fact a homomorphism of monoids by Proposition 4.5.2, where the monoid
structure on R∗(Crg) is given by the wedge product. This monoid homomorphism
induces a homomorphism of R-algebras

α : R[G(r)] → R∗(Crg).
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By Theorem 4.5.1 it holds that this homomorphism is surjective.
If Γ is an r-marked graph of characteristic r − d, the corresponding form αΓ

is of degree 2d, and hence the above R-algebra homomorphism is in fact a homo-
morphism of graded R-algebras⊕

d∈Z
R[G(r, r − d)] →

⊕
d∈Z

R2d(Crg).

Next, consider the submonoid CG(r) ⊆ G(r) and the subsets CG(r, r − d) ⊆
G(r, r − d) consisting of graphs that are contracted. The inclusion map CG(r) →
G(r) induces a homomorphism of (graded) R-algebras

R[CG(r)] → R[G(r)],

and the composition of this map with α yields another graded homomorphism

α′ : R[CG(r)] → R2∗(Crg).

Theorem 4.6.4 says that this homomorphism is surjective.
By Theorem 3.8.1 the set CG(r, r−d) is empty for all d < 0. For each d ≥ 0 the

set CG(r, r− d) is effectively computable by using the algorithm found in Section
3.7. Moreover, for d > r + 3g − 3 the space R2d(Crg) is trivial, so for these d the
degree d summand of R[CG(r, r − d)] is contained in the kernel of α′. It follows
that, in order to compute R∗(Crg), we need to compute the kernel of the linear
map

R[CG(r, r − d)] → R2d(Crg)

for all 0 ≤ d ≤ r + 3g − 3. In any case, we obtain the following.

Theorem 4.7.1. The graded R-algebra R2∗(Crg) is a quotient of the monoid ring
R[CG(r)]. More precisely, it is a quotient of the quotient ring

R[CG(r)]

R[CG(r)]>(r+3g−3)
=

R[CG(r)]⊕
d>r+3g−3 R[CG(r, r − d)]

.

and that quotient ring is effectively computable; it is isomorphic as a vector space
to

r+3g−3⊕
d=0

R[CG(r, r − d)]

The inclusion CG(r) → G(r) has a retraction ϱ : G(r) → CG(r) which is the
contraction map. Therefore, the induced homomorphism R[G(r)] → R[CG(r)] is
a retraction of the inclusion R[CG(r)] → R[G(r)]. However, it turns out that this
retraction is not the right retraction for our purposes: this retraction is incompat-
ible with the homomorphisms from these monoid rings to the ring of tautological
forms. For instance, if Γ denotes the 0-marked graph with one vertex and one
loop, then the associated form αΓ is the constant function (2 − 2g). The con-
tracted graph ϱ(Γ) is the empty graph, and the associated form is the constant
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function 1; we therefore see that αΓ ̸= αϱ(Γ). It is more natural to define an
R-algebra homomorphism

ϱ̃g : R[G(r)] → R[CG(r)],

that depends on g, as follows.
Let Γ be an r-marked graph, and let ϱ(Γ) be the corresponding contracted

r-marked graph. Define the integer λΓ,g as:

λΓ,g = 0a · (2− 2g)b,

where a and b denote the number of contractions of type 0 and 2c, respectively, in
the contraction procedure. Equivalently, a and b equal the number of connected
components of Γ, without marked vertices, of characteristic 1 and 0, respectively.
It follows from Proposition 4.6.2 that

αΓ = λΓ,g · αϱ(Γ).

We define the R-algebra homomorphism ϱ̃g : R[G(r)] → R[CG(r)] by setting

ϱ̃g(Γ) = λΓ,g · ϱ(Γ) for all Γ ∈ G(r).

As λΓ,g = 1 for all contracted graphs, it follows that ϱ̃g is a retraction of the
inclusion map R[CG(r)] → R[G(r)]. Moreover, the following diagram commutes.

R[G(r)]

R2∗(Crg)

R[CG(r)]

ϱ̃g (4.7.2)

4.8 Tautological 2-forms
In this section we give a description of the vector spaces R2(Crg) of tautological
two-forms on the spaces Crg for all r ≥ 0. Recall that we have seen some examples
of these 2-forms already: on C2

g we have the 2-form h associated to the diagonal,
on Cg we have eA = ∆∗h associated to the tangent bundle, and on Mg we found
two more 2-forms

eA1 :=

∫
Cg/Mg

(eA)2 and ν :=

∫
C2
g/Mg

h3.

We will prove that these 2-forms are ‘all there is’: the tautological ring R2(Crg) is
spanned by pullbacks of h, eA, eA1 , and ν along tautological submersions.

Let r ≥ 0 be an integer. We wish to compute generators for R2(Crg). By
Theorem 4.6.4, we find that this space is spanned by forms αΓ, where Γ ranges
over all contracted r-marked graphs of characteristic r − 1. In Example 3.7.2 we
have computed the set CG(r, r − 1). We found the following graphs:
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• Graphs Γ with r marked vertices, no unmarked vertices, and a single edge.
If this edge is a loop based at vertex i then the associated form is

αΓ = p∗i e
A.

If the edge is not a loop, and its endpoints are vertices i and j, then the
associated form is

αΓ = p∗ijh.

• The graph Γ with r marked vertices, one unmarked vertex, and two loops
based at the unmarked vertex. The associated form is

αΓ =

∫
p1,...,r:Cr+1

g →Crg
p∗r+1(e

A)2 = eA1

by the base change formula. Note the slight abuse of notation here: we write
eA1 for the pullback of eA1 along the tautological morphism Crg → Mg.

• The graph Γ with r marked vertices, two unmarked vertices, and three edges
between the unmarked vertices. By using the base change formula we obtain

αΓ =

∫
p1,...,r:Cr+2

g →Crg
p∗r+1,r+2h

3 = ν

where we again abuse the notation by writing ν for the pullback of ν along
Crg → Mg.

We find that R2(Crg) is spanned by the following collection of 2-forms:

{p∗ijh : 1 ≤ i < j ≤ r} ∪ {p∗i eA : 1 ≤ i ≤ r} ∪ {eA1 , ν}. (4.8.1)

In the remainder of this section, we prove that, in fact, these 2-forms form a basis
of R2(Crg) if g > 2, and there is only one relation among these forms if g = 2.

Theorem 4.8.2. For all g ≥ 2 and r ≥ 0, we have

dimR2(Crg) = 1
2r(r + 1) + 2− ε(g),

where

ε(g) =

{
1 if g = 2

0 if g ≥ 3.

If g ≥ 3 a basis is given by the 2-forms

{p∗ijh : 1 ≤ i < j ≤ r} ∪ {p∗i eA : 1 ≤ i ≤ r} ∪ {eA1 , ν}.

If g = 2 a basis is given by the 2-forms

{p∗ijh : 1 ≤ i < j ≤ r} ∪ {p∗i eA : 1 ≤ i ≤ r} ∪ {eA1 },

and eA1 and ν are linearly dependent: we have

−8ν − 12eA1 = 0.

We will prove this theorem by induction on r. We start with the following
proposition.
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Proposition 4.8.3. If g = 2, then R2(Mg) is one-dimensional, and spanned by
eA1 . If g ≥ 3, then R2(Mg) is two-dimensional, and spanned by eA1 and ν.

Proof. Recall that the following identity holds:

ν − eA1 =
∂∂φ

π
√
−1

.

Before stating Theorem 4.8.2, we showed for all r ≥ 0 that R2(Crg) is spanned by
the forms listed in Equation 4.8.1. In particular, R2(Mg) is spanned by ν and eA1 .
Therefore, the dimension of R2(Mg) is at most two.

Suppose, first, that g = 2. In Example 4.10.5, which does not depend on any
of the material treated in this section, we obtain the relation

−8ν − 12eA1 = 0.

Moreover, the real 2-form
∂∂φ

π
√
−1

is nonzero; see [DG14]. We conclude that R2(M2) is one-dimensional.
Now, suppose that g ≥ 3. By observing the asymptotic behavior of φ around

the boundary of Mg studied in [dJon14], we find in particular that φ is not con-
stant. Using [Kaw09, Lemma 8.1] we deduce:

∂∂φ

π
√
−1

̸= 0

Moreover, the cohomology class κ1 associated to eA1 does not vanish. Indeed, one
can show (see, for instance, [Mum83]) that κ1 = 12λ1 with λ1 the first Chern class
of the Hodge bundle on Mg, and in [AC87] it is proved that λ1 freely generates
the Picard group of Mg, and is in particular not torsion. Consequently, eA1 is not
an exact form; we find therefore that eA1 and ∂∂φ

π
√
−1

are linearly independent.

Proof of Theorem 4.8.2. The case r = 0 is proved in Proposition 4.8.3. For the
case r = 1: by Lemma 2.5.4 the morphism p : Cg → Mg induces an inclusion
p∗ : R2(Mg) → R2(Cg). Moreover, forms pulled back from Mg are in the kernel
of the fiber integral along p: for each α ∈ A∗(Mg) we have by the projection
formula: ∫

p

p∗α = α ·
∫
p

1 = 0

As ∫
p

eA = (2− 2g) ̸= 0,

we find that eA is not an element of p∗R2(Mg). As R2(Cg) is spanned by the
forms eA, eA1 , and ν, we obtain:

dimR2(Cg) = dimR2(Mg) + 1 = 3− ε(g).
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Now let r ≥ 2, and assume that

dimR2(Csg) = 1
2s(s+ 1) + 2− ε(g)

for all 0 ≤ s < r. Consider the following three tautological morphisms:

p(r) : Crg → Cr−1
g : (x1, . . . , xr) 7→ (x1, . . . , xr−1);

p(r−1) : Crg → Cr−1
g : (x1, . . . , xr) 7→ (x1, . . . , xr−2, xr);

q(r−1) : Cr−1
g → Cr−2

g : (x1, . . . , xr−1) 7→ (x1, . . . , xr−2).

We have a cartesian square

Crg Cr−1
g

Cr−1
g Cr−2

g .

p(r)

p(r−1) □ q(r−1)

q(r−1)

These maps induce linear subspaces W1 := Im p∗(r), W2 := Im p∗(r−1), and W12 :=

W1 ∩W2 of R2(Crg). The forms eA1 , ν, p∗i eA, and p∗ijh, (possibly) except for the
form p∗r−1,rh, all lie in W1 or W2. It follows that

R2(Crg) = (W1 +W2) + R · p∗r−1,rh.

Obviously the pullback of each form on Cr−2
g along the composition q(r−1) ◦

p(r−1) = q(r−1) ◦ p(r) is an element of W12. Conversely, we claim that each form
in W12 is the pullback along this composition of some form on Cr−2

g . Indeed,
let α ∈ W12 be any form; we may write α = p∗(r)β = p∗(r−1)γ for forms β, γ ∈
R2(Cr−1

g ). Let µ ∈ R2(Cg) be the 2-form given by µ = eA/(2− 2g); it follows that∫
Cg/Mg

µ = 1, and by the base change formula we obtain∫
p(r)

p∗rµ = 1.

We then find by repeatedly using the base change formula and the projection
formula:

β = β ∧
∫
p(r)

p∗rµ

=

∫
p(r)

p∗(r)β ∧ p∗rµ

=

∫
p(r)

p∗(r−1)γ ∧ p∗rµ

=

∫
p(r)

p∗(r−1)(γ ∧ p∗r−1µ)

= q∗(r−1)

∫
q(r−1)

γ ∧ p∗r−1µ,
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and therefore
α = p∗(r)β = p∗(r)q

∗
(r−1)

∫
q(r−1)

γ ∧ p∗r−1µ,

which proves our claim.
As pullbacks along tautological submersions are injective, we obtain the fol-

lowing equalities from the induction hypothesis:

dimW1 = dimW2 = dimR2(Cr−1
g ) = 1

2r
2 − 1

2r + 2− ε(g)

dimW12 = dim Im(p∗(r) ◦ q
∗
(r−1)) = dimR2(Cr−2

g ) = 1
2r

2 − 3
2r + 3− ε(g)

dim(W1 +W2) = dimW1 + dimW2 − dimW12 = 1
2r

2 + 1
2r + 1− ε(g).

If we can prove that p∗r−1,rh /∈W1+W2 then dimR2(Crg) = 1
2r

2+ 1
2r+2−ε(g)

and we are done. Suppose, therefore, that p∗r−1,rh ∈ W1 + W2; we can write
p∗r−1,rh = p∗(r)α + p∗(r−1)β for some 2-forms α, β on Cr−1

g . As h is symmetric, we
may even assume with no loss of generality that α = β:

p∗r−1,rh = p∗(r)α+ p∗(r−1)α.

Consider the map

f : Cr−1
g → Crg : (x1, . . . , xr−1) 7→ (x1, . . . , xr−1, xr−1);

this map is a section of both p(r) and p(r−1) and fits in a cartesian diagram

Cr−1
g Crg

Cg C2
g .

f

pr−1 pr−1,r

∆

We then find:
p∗r−1e

A = p∗r−1∆
∗h = f∗p∗r−1,rh = 2α;

so α = 1
2p

∗
r−1e

A, and

p∗r−1,rh = 1
2p

∗
r−1e

A + 1
2p

∗
re
A ∈ R2(Crg).

Integration along the fibers of the morphism p(r) : Crg → Cr−1
g then yields:

1 =

∫
p(r)

p∗r−1,rh =

∫
p(r)

1
2 (p

∗
r−1e

A + p∗re
A) = 0 + 1

2 (2− 2g),

which contradicts with our assumption that g ≥ 2. We conclude that p∗r−1,rh is
not in the span of the subspaces W1 and W2, so we find:

dimR2(Crg) = dim(W1 +W2) + 1 = 1
2r

2 + 1
2r + 2− ε(g).

The theorem follows by induction.

Let us return to the discussion we started in Section 4.3.
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Corollary 4.8.4. The subspace of exact 2-forms I2(Mg) ⊆ R2(Mg) is one-
dimensional. It is spanned by the form

∂∂φ

π
√
−1

= ν − eA1

where φ : Mg → R denotes the Kawazumi–Zhang invariant.

Proof. The cohomology classes of ν and eA1 are equal: if p : Cg → Mg, q : C2
g →

Mg, and p1, p2 : C2
g → Cg denote the tautological submersions, then

[ν] = q∗(∆
3) = q∗(p

∗
1K

2 ·∆) = p∗(K
2 · p1,∗∆) = p∗K

2 = κ1 = [eA1 ] ∈ RH2(Mg).

It follows that ν − eA1 is exact. It is moreover a nonzero form, as we saw in the
proof of Proposition 4.8.3, so the dimension of I2(Mg) is positive. If g = 2 this
concludes our proof, since dimR2(Mg) = 1. If g ≥ 3 then we saw in the proof of
4.8.3 that the class κ1 of eA1 does not vanish, so I2(Mg) is a proper subspace of
the two-dimensional space R2(Mg).

We therefore find that the Kawazumi–Zhang invariant is the only invariant
(up to additive and multiplicative constants) that arises on Mg from tautological
forms.

4.9 Tautological 2d-forms
In the previous section we have given a complete description of the vector space
R2(Crg) of tautological 2-forms on the space Crg . We observed that for high values
of r no ‘new’ tautological forms appear; that is: for r > 2 the space R2(Crg) is
spanned by pullbacks of 2-forms in R2(C2

g ) along tautological submersions.
This observation generalizes to higher degrees, too.

Theorem 4.9.1. Let d ≥ 0 be an integer. For all r > 2d the space R2d(Crg) is
spanned by pullbacks of tautological 2d-forms on C2d

g along tautological submer-
sions Crg → C2d

g .

Proof. Let r > 2d be given. By Theorem 4.6.4, it holds that the vector space
R2d(Crg) is spanned by tautological forms associated to contracted r-marked graphs
Γ of characteristic r − d. Let Γ be such a graph. Lemma 3.8.3 implies that the
number of marked vertices of positive degree is at most 2d. Let ϕ : {1, . . . , 2d} →
{1, . . . , r} be an injective map, such that every i ∈ {1, . . . , r} with deg(m(i)) > 0
lies in the image of ϕ. By Lemma 3.8.5 it follows that Γ is in the image of the
pushforward map

ϕ∗ : CG(2d, 2d− d) → CG(r, r − d),

and Proposition 4.5.3 thus implies that αΓ lies in the image of the pullback map

fϕ,∗ : R2d(C2d
g ) → R2d(Crg).
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In Theorem 4.8.2 we gave a closed formula for the dimension of R2(Crg) in terms
of r and g. In particular, we saw that the growth rate of dimR2(Crg) as r tends to
infinity is quadratic. This latter statement can be generalized to arbitrary degree.

Theorem 4.9.2. Let d ≥ 0. There exists a polynomial fd of degree 2d (that does
not depend on g), whose leading coefficient equals 1/(2d · d!), such that

dimR2d(Crg) ≤ fd(r) for all r ≥ 0, g ≥ 2.

Proof. By Theorem 4.6.4 R2d(Crg) is spanned by forms associated to contracted
r-marked graphs of characteristic r − d. Using Theorem 3.8.1 we find that the
number of such graphs in terms of r is given by a degree 2d polynomial fd with
leading coefficient equal to 1/(2d · d!).

In the case d = 1, we have seen in the last section that at most one relation
appears among the tautological forms associated to graphs that span R2(Crg), and
that this relation can be obtained from R2(Mg) via pullback. In other words: the
linear relations among tautological forms associated to graphs in R2(Crg) for low
values of r determine the linear relations among these forms in R2(Crg) for general
r. This allows us to prove that the dimension of R2(Crg) is given by a quadratic
polynomial. This polynomial does depend on g, but stabilizes for g > 2.

It seems natural that this result would generalize as follows. For any d ≥ 1,
any linear relations among forms associated to graphs in R2d(Crg) for high r (say,
r > 2d) would be obtained by pulling back such relations from R2d(C2d

g ). Then, by
combining arguments from sections 4.8 and 3.8, one might be able to prove that the
dimension of R2d(Crg) is given by a polynomial of degree 2d. The polynomial would
depend on g, but might stabilize for high values of g. One of the main problems
the author encounters is that the inclusion-exclusion principle, that aids us in
proving that the number of r-marked graphs of a certain characteristic is given by
a polynomial, does not translate well into the language of vector spaces we use in
this section: while taking the intersection of sets is distributive over taking unions,
the same cannot be said about taking intersections of vector subspaces and spans
of vector subspaces.

4.10 Relations induced by Abel–Jacobi maps

In [Ran12] Randal-Williams constructs cohomology classes ΩA ∈ H2(Crg ;Z) whose
(g + 1)st power is torsion and hence trivial when passed to cohomology with
rational coefficients. These cohomology classes are tautological and can therefore
be expressed as linear combinations of the ‘standard’ tautological classes ∆ij , Ki,
and κi. Taking the (g+1)st power, then, yields relations between these tautological
classes. Moreover, fiber integrating these relations then gives relations between
tautological classes on Mg.

In this section we will take a similar approach to obtain relations between tau-
tological differential forms. Recall from Sections 1.4 and 2.7 that on the universal
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Jacobian we have a canonical line bundle B, equipped with a canonical admissible
metric. We denote by 2ω0 the first Chern form of this hermitian line bundle. In
this section we will construct morphisms Crg → Jg and show that the pullbacks
of 2ω0 along these morphisms are tautological differential forms. Moreover, we
will see that the (g + 1)st power of ω0 vanishes, and we will use this to generate
relations among tautological forms.

Let f : C → S be a family of curves of genus g ≥ 2, and let J → S denote the
associated Jacobian family. Let r ≥ 0 be any integer, and let m = (m1, . . . ,mr)
be an r-tuple of integers whose sum equals zero. Consider the submersion

p = p(r) : Cr+1 → Cr : (x1, . . . , xr+1) 7→ (x1, . . . , xr)

and its r sections

σi : Cr → Cr+1 : (x1, . . . , xr) → (x1, . . . , xr, xi) (1 ≤ i ≤ r)

Now consider the following line bundle on Cr+1:

Lm = O(m1σ1 + · · ·+mrσr) = O(σ1)
⊗m1 ⊗ · · · ⊗O(σr)

⊗mr

The restriction of this line bundle to each fiber of p has degree 0, and this line
bundle hence determines a section of the Jacobian family J ×S Cr → Cr associated
to p. The composition of this section with the projection J ×S Cr → J is the
morphism

fm : Cr → J : ((x1, . . . , xr) ∈ Crs ) 7→ ([O(m1x1 + · · ·+mrxr)] ∈ Js = Jac(Cs)).

We obtain from Proposition 1.4.14 a canonical isometry

f∗mB⊗−1 ∼−→ ⟨Lm, Lm⟩p.

As the Deligne pairing is bilinear, we find another canonical isometry

⟨Lm, Lm⟩p
∼−→

r⊗
i=1

r⊗
j=1

⟨O(σi), O(σj)⟩⊗mimj .

Notice that for all 1 ≤ j ≤ r we have a canonical isometry

O(σj)
∼−→ p∗j,r+1O(∆)

so taking the pullback along σi yields yet another canonical isometry

σ∗
iO(σj) ≃ σ∗

i p
∗
j,r+1O(∆) ≃

{
p∗jiO(∆) = p∗ijO(∆) if i ̸= j

p∗j∆
∗O(∆) = p∗jω

⊗−1 if i = j.

By combining the above canonical isometries we obtain

f∗mB⊗−1 ≃
⊗

1≤i<j≤r

p∗ijO(∆)⊗2mimj ⊗
r⊗
i=1

p∗iω
⊗−m2

i .

Universally we obtain the following result.
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Proposition 4.10.1. Let r ≥ 0 be an integer, and let (m1, . . . ,mr) be a tuple of
integers whose sum equals zero. Consider the morphism of stacks

fm : Crg → Jg

that takes a family f : C → S with sections σ1, . . . , σr and maps it to the pair
(f, σ), with σ the following section of the Jacobian family Jf → S:

σ : S → Jf : s 7→ [O(m1σ1(s) + · · ·+mrσr(s))] ∈ Jac(Cs).

Then we have a canonical isometry of line bundles on Crg :

f∗mB⊗−1 ≃
⊗

1≤i<j≤r

p∗ijO(∆)⊗2mimj ⊗
r⊗
i=1

p∗iω
⊗−m2

i .

Taking first Chern forms then yields:

Corollary 4.10.2. Let r ≥ 0 be an integer, and let m = (m1, . . . ,mr) be a
tuple of integers whose sum equals zero. Consider the induced morphism of stacks
fm : Crg → Jg as described in Proposition 4.10.1. Then we have the following
equality of 2-forms on Crg :

−2f∗mω0 =
∑

1≤i<j≤r

2mimjp
∗
ijh+

r∑
i=1

m2
i p

∗
i e
A ∈ A2(Crg).

In particular the form f∗mω0 is tautological.

Example 4.10.3. Set r = 2 and m = (−1, 1), then the associated morphism

f(−1,1) : C2
g → Jg

equals the Abel–Jacobi morphism δ defined in Section 1.4 and Section 2.7. From
Proposition 4.10.1 we retrieve the canonical isometry

δ∗B⊗−1 ∼−→ O(∆)⊗−2 ⊗ p∗1ω
⊗−1 ⊗ p∗2ω

⊗−1

that we already encountered in Proposition 1.4.15. Taking Chern forms, then,
yields the identity

−2δ∗ω0 = −2h+ p∗1e
A + p∗2e

A

that was proved in Proposition 4.3.6 and [dJon16, Theorem 1.4].

The following proposition will be used to obtain relations among tautological
differential forms.
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Proposition 4.10.4 ([dJon20, Proposition 5.1]). Let 2ω0 ∈ A2(Jg) be the first
Chern form of the canonical line bundle B on Jg with its canonical admissible
metric. Then we have

ωg+1
0 = 0 ∈ A2g+2(Jg).

For instance, the (g+1)st power of the form induced by the Abel–Jacobi map
in Example 4.10.3 is zero, and we can express this (g + 1)st power in terms of
tautological forms. In this example we will compute the resulting relation in the
case g = 2, as this is still feasible to do by hand.

Example 4.10.5. Suppose that g = 2 and r = 2. In this case, we obtain from
Example 4.10.3 and Corollary 4.10.4:

(−2h+ p∗1e
A + p∗2e

A)3 = 0 ∈ R6(C2
2).

By expanding parentheses we obtain a linear combination of 10 tautological forms
on C2

g associated to 2-marked graphs. Of these tautological forms we can take the
fiber integral along the map C2

g → Mg. For instance, consider the form

α = h ∧ p∗1eA ∧ p∗2eA ∈ R6(C2
2).

This form is the tautological form associated to the 2-marked graph

Γ =

(
1 2

)
.

The projection C2
g → Mg is the tautological morphism associated to the map

∅ → {1, 2}. Therefore, by Proposition 4.5.4, the fiber integral of α along this
projection is the tautological form associated to the graph

ϕ∗Γ =

( )
We can compute the tautological form associated to ϕ∗Γ by contracting this graph:
we have:

αϕ∗Γ = αϱ̃2(ϕ∗Γ) = αϱ(ϕ∗Γ),

and ϱ(ϕ∗Γ) is the contracted graph

ϱ(ϕ∗Γ) =

( )
The tautological form associated to this graph is eA1 , and we find:∫

C2
2→M2

h ∧ p∗1eA ∧ p∗2eA = eA1 .

By repeating this procedure for all the 10 tautological forms we found earlier, we
obtain the following identity:

−8ν − 12eA1 = 0 ∈ A2(Mg).
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The identity we obtain in Example 4.10.5 can be derived directly from [dJon16].
Proposition 9.1 of loc. cit. gives an identity of 2-forms on Mg

eJ1 − eA1 =
2g − 2

2g + 1
· ∂∂φ

π
√
−1

,

where eJ1 is a 2-form on Mg that vanishes on the locus of hyperelliptic curves in
Mg (by loc. cit., Proposition 10.7). Every curve of genus 2 is hyperelliptic, so for
g = 2 we obtain the following relation:

−eA1 =
2

5
· ∂∂φ

π
√
−1

=
2

5
· (ν − eA1 ),

from which one easily derives the identity found in Example 4.10.5.

4.11 Computations in higher degrees and genera
In Example 4.10.5 we used Corollary 4.10.2 and Corollary 4.10.4 to obtain a re-
lation among tautological forms in R2(M2). This was relatively easy, as we only
needed to work with the third power of ω, and hence needed to compute the fiber
integral of ‘only’ 10 differential forms. Of course, if we want to construct similar
relations in higher genera, or in higher degrees, it quickly becomes infeasible to do
this by hand. In this section, we describe an algorithm for finding relations among
generators of spaces R2d(Csg), and provide some example computations.

Recall that in Section 4.7 we have constructed a surjective graded homomor-
phism R[CG(r)] → R2∗(Crg). We will denote this morphism by αr. Computations
in the ring R[CG(r)] can be carried out effectively. We will be using the following
lemma to construct elements in the kernel of αr.

Lemma 4.11.1. Let r ≥ 2 be an integer. For 1 ≤ i, j ≤ r let Γij be the r-marked
graph with no unmarked vertices and a single edge between the vertices marked
i and j; notice that Γij is contracted as it has no unmarked vertices, and notice
that Γij = Γji. Consider the polynomial ring

R[CG(r)][x1, . . . , xr−1],

and define xr = −x1 − · · · − xr−1. Now define the polynomial

Wr =

r∑
i,j=1

Γij · xixj ∈ R[CG(r)][x1, . . . , xr−1].

Then W g+1
r lies in the kernel of the homomorphism

ᾱr : R[CG(r)][x1, . . . , xr−1] → R2∗(Crg)[x1, . . . , xr−1]

induced by αr. In particular, all coefficients of W g+1
r lie in the kernel of αr.
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Proof. Set wr = αr(Wr). By Corollary 4.10.2 we then have for all m1, . . . ,mr−1 ∈
Z:

wr(m1, . . . ,mr−1) = −2f∗mω0 ∈ R2(Crg)

where m denotes the tuple (m1, . . . ,mr−1,−m1 − · · · − mr−1). By Proposition
4.10.4 we then see that wg+1

r vanishes on Zr−1, which implies that it must be the
zero polynomial.

Let s ≤ r be an integer, and consider the inclusion map ϕ : {1, . . . , s} →
{1, . . . , r}. From Diagram 4.7.2 and Proposition 4.5.4 we obtain a commutative
diagram

R[CG(r)] R2∗(Crg)

R[G(s)] R2∗(Csg)

R[CG(s)]

ϕ∗

αr

∫
fϕ

ϱ̃g
αs

(4.11.2)

In particular, we may pass the coefficients of W g+1
r through the homomorphism

ϱ̃g ◦ ϕ∗ to obtain elements in the kernel of αs.

Example 4.11.3. Let r = 2, s = 0, g = 2. We have:

Wr = Γ11x
2
1 + Γ12x1x2 + Γ21x2x1 + Γ22x

2
2 = (Γ11 − 2Γ12 + Γ22)x

2
1,

and
W 3
r = (Γ11 − 2Γ12 + Γ22)

3x61.

From Lemma 4.11.1 we find that (Γ11 − 2Γ12 + Γ22)
3 lies in the kernel of αr. In

other words: we have the following identity of tautological forms on C2
2 :

(p∗1e
A − 2h+ p∗2e

A)3 = 0,

which was already clear from Proposition 4.3.6 and Proposition 4.10.4. A compu-
tation by hand shows:

(ϱ̃g ◦ ϕ∗)((Γ11 − 2Γ12 + Γ22)
3) = −12 ( )− 8 ( ) ∈ Ker(αs),

and applying αs to this element of R[CG(s)] then yields the identity

−12eA1 − 8ν = 0 ∈ R2(M2)

we found in Example 4.10.5.

Another trick we can use is the following. Instead of viewing the genus g as a
constant, we view it as a variable. In Diagram 4.11.2 we replace the base ring R
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in the left column by the polynomial ring R[g′]. We thus obtain for all g ≥ 2 a
commutative diagram

R[g′][CG(r)] R2∗(Crg)

R[g′][G(s)] R2∗(Csg)

R[g′][CG(s)]

ϕ∗

αr

∫
fϕ

ϱ̃
αs

(4.11.4)

Here ϱ̃ denotes the unique morphism of R[g′]-algebras that maps a graph Γ ∈ G(s)
to λΓ · ϱ(Γ), where λΓ is given by

λΓ = 0a(2− 2g′)b ∈ R[g′]

with a and b the number of connected components of Γ with no marked vertices of
characteristic 1 and 0, respectively. The maps from left to right in diagram 4.11.4
are the unique extensions of the corresponding maps in diagram 4.11.2 that map
g′ to g.

Our algorithm for finding elements in the kernel of αs is as follows. We pick
r ≥ 2, 0 ≤ s ≤ r, and G ≥ 2. We then compute WG+1

r ∈ R[CG(r)][x1, . . . , xr−1].
Then for each of the coefficients c ∈ R[CG(r)] of WG+1

r , compute ϱ̃(ϕ∗c). The
resulting element is in the kernel of the homomorphism R[g′][CG(s)] → R2∗(Csg)
for all 2 ≤ g ≤ G.

An implementation of this algorithm in Sage is provided in [vdLug21]. We will
list some results for low values of r, s,G.

Example 4.11.5. If we set r = 2, s = 0, and G = 4, we find that for all 2 ≤ g ≤ 4,
the following element lies in the kernel of the map R[CG(0)] → R2(Mg):

−3(g − 4)(g − 3)(g − 1) ( )− 2(g − 4)(g − 3) ( ) .

If g = 2 we retrieve Example 4.11.3. For g = 3 and g = 4 we retrieve nothing at
all, as the above vector vanishes.

Example 4.11.6. If we set r = 2, s = 0 and G = 3, we obtain the following
element in the kernel of R[CG(0)] → R2∗(Mg) for all g ∈ {2, 3}:

−8g
( )

+ 3
( )

− 32 ( ) + 24 ( ) + 8 ( )

In terms of differential forms we obtain the following relation among tautological
forms in R4(Mg) for g ∈ {2, 3}:

−8g · eA2 + 3(eA1 )
2 − 32

∫
(p∗1e

A ∧ h3) + 24

∫
(p∗1e

A ∧ p∗2eA ∧ h2) + 8

∫
h4 = 0
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where the integral symbol denotes fiber integration along the map C2
g → Mg.

Example 4.11.7. If we set r = 4, s = 0 and G = 5, we obtain another element
in R[CG(0)] that involves all the 11 contracted unmarked graphs of characteristic
−2. For 2 ≤ g ≤ 5, the following element lies in the kernel of the map R[CG(0)] →
R4(Mg).

− 8(g − 4)(4g2 − 20g + 3)
( )

+ (9g2 − 87g + 201)
( )

− 32(g − 5)(4g − 15) ( ) + (72g2 − 696g + 1608) ( )

+ 24(g − 5)(g − 4) ( )− 4(g − 2)

( )
− 48(g − 2)

( )
− 48(g − 5)

( )
− 4

( )
− 72

( )
− 48

( )
.

Our algorithm takes integers r, s,G and gives relations in R2d(Csg), where d =
G + 1 − r + s. It is interesting to observe what happens to these relations when
we fix s and d and let G (and hence r = G+ 1 + s− d) increase.

For example, fixing s = 0, d = G + 1 − r + s = 1 and running our algorithm
with G increasing from 2 to 5 yields the following elements of R[g][CG(0)]:

G vectors in R[g][CG(0)]

2 (−3(g − 1) ( )− 2 ( ))
3 (g − 3) (−3(g − 1) ( )− 2 ( ))
4 (g − 4)(g − 3) (−3(g − 1) ( )− 2 ( ))
5 (g − 5)(g − 4)(g − 3) (−3(g − 1) ( )− 2 ( ))

The pattern is clear: it seems that for G ≥ 2 the following vector is obtained
in R[g][CG(0,−1)]:(

G∏
k=3

(g − k)

)
· (−3(g − 1) ( )− 2 ( )) .

In particular, the only value of g for which this vector yields a nontrivial relation
in the ring of tautological forms would then be g = 2.

A similar phenomenon occurs if we increase G in examples 4.11.6 and 4.11.7.
This suggests that relations (or at least, relations found using ω0) among elements
of R∗(Mg) for low values of g vanish if we let g increase. These observations
prompt the following question.

Question 4.11.8. Suppose we are given integers r ≥ 0 and d ≥ 0. Does there
exist a g0 ≥ 2 such that for all g ≥ g0 the linear map

R[CG(r, r − d)] → R2d(Crg)
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is an isomorphism? Is there an expression for g0 in terms of r and d?

Recall that an analogue in rings of tautological classes is given by Mumford’s
conjecture (proved in [MW07]) that for any d > 0 there exists a g0 ≥ 2 such that
the map Q[κ1, κ2, . . . ] → RH∗(Mg) is an isomorphism in degree d for all g ≥ g0.

Theorem 4.8.2 moreover states that the above question can be answered with
‘yes’ if d = 1. In this case, we have:

dimR[CG(r, r − 1)] = 1
2r

2 + 1
2r + 2

by Example 3.7.2, and for all g ≥ g0 = 3 we have:

dimR2(Crg) = 1
2r

2 + 1
2r + 2

by Theorem 4.8.2, and the linear map

R[CG(r, r − d)] → R(Crg)

is therefore an isomorphism, as it is a surjective map between vector spaces of the
same dimension. It is moreover interesting to see that in this case the value g0 = 3
does not depend on r.
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Summary

The study of moduli spaces could be viewed as the mathematical analogue of tax-
onomy in biology. Where a biologist would, for example, try to find all the distinct
species of Galapagos finches, a mathematician would be interested in finding all
the mathematical objects of a certain type. When making such classifications,
one can make use of moduli spaces: geometrical objects whose points correspond
one-to-one with the objects we wish to classify.

For instance, take all the numbers and arrange them in ascending order to
obtain a line, the number line:

−1 0 2 e π 4 1
2

The points on the number line correspond one-to-one with the numbers. Therefore,
the number line is a moduli space for all numbers.

Now, let us classify all lines in the plane that go through a certain point.
Suppose that P is a point in the plane, and suppose that we wish to classify all
lines in the plane through P . We will therefore look for a moduli space for lines
through P . Now draw a circle around P that has P as its center:

P

If Q is a point on this circle, then we obtain a line through P by drawing a line
through P and Q:

P

Q

Moreover, every line through P can be obtained in this way. It appears that we
have found a moduli space for all lines through P . This circle, however, is not
a moduli space. Indeed, if it were a moduli space, its points would correspond
one-to-one with lines through P . But consider two points Q and R that lie on
opposite sides of the circle:
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P

Q

R

The line through P and Q and the line through P and R are the same! The
correspondence between points on the circle and lines through P is ‘two-to-one’,
instead of one-to-one: we have pairs of points that induce the same line.

So how do we get a moduli space of lines through P? One thing we can do is
to add extra structure to the lines we are trying to classify. For example, we could
rather try looking at lines through P with a direction. Every line in the plane has
two directions:

P P

If we now have a point Q on the circle around P , then we draw the line through
P and Q in the direction from P to Q:

P

Q

The reader can verify that even though two points at opposite sides of the circle
give rise to the same lines, the directions of these lines differ. Points on the circle
therefore correspond one-to-one with lines through P with a direction. We thus
find that the circle around P is a moduli space for lines through P with a direction.

This method of adding extra structure to objects so that their moduli space will
be easier to describe is called rigidification. It is a technique that is often applied
by mathematicians when they wish to study moduli spaces of more complicated
objects.

But what if we do not want to add any additional structure to the objects we
are classifying? If we are only interested in lines through P , and not at all in lines
through P with a direction, then we can use a different technique. Manipulate the
circle as follows: lift the circle from the plane, wrap it ‘around itself’ once, and
glue the two strands together:

We thus obtain a new circle. Any two points on opposite sides of the old circle
are glued together into a single point on the new circle. In other words: every
point on the new circle corresponds to a pair of points on opposite sides of the old
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circle, and these points induce the same line through P . So there is a one-to-one
correspondence between points on the new circle and lines through P , and the new
circle is therefore a moduli space for the lines through P .

We invite the reader to carry out the construction described above. Take a
sheet of paper, a couple of markers with different colors, and a rubber band. Draw
the point P on the sheet of paper, and lay down the rubber band around it such
that it forms a circle around this point. For each marker choose a pair of points
on opposite sides of the rubber band, and mark these points with the same color.
Now take the rubber band and wrap it around itself once, as described in the
above figure. You will see that all pairs of points with the same color coincide.

‘Wrapping’ a geometric object around itself to obtain a new geometric object
is also a technique mathematicians use often. They call this technique taking a
quotient.

In this thesis we study the moduli space of certain geometric objects, namely
compact Riemann surfaces of genus g. Moreover we discuss the differential forms
that live on this moduli space. In Chapter 1 we discuss some theory about sub-
mersions of manifolds, families of compact Riemann surfaces, and hermitian line
bundles on these families. We construct various canonical hermitian line bundles
and give canonical isometries between these line bundles. In Chapter 2 we look
at the moduli space of compact Riemann surfaces of genus g. We discuss that
there is no ‘nice’ moduli space, but that this problem can be fixed by rigidifying
or by taking quotients. In Chapter 3 we look at marked graphs. These are graphs
of which some vertices are marked with positive integers. These graphs can be
contracted, and we show that formulas can be given for the number of contracted
marked graphs of any given characteristic in terms of the number of marked ver-
tices. Finally, in Chapter 4, we study tautological differential forms on the moduli
space. By using the marked graphs from Chapter 3 we can show that there are
not ‘too many’ such tautological differential forms, and we compute some relations
between these tautological differential forms.
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Tautologische differentiaalvormen op
moduliruimtes van krommen

Het bestuderen van moduliruimtes zou opgevat kunnen worden als de wiskun-
dige variant van de taxonomie uit de biologie. Waar een bioloog bijvoorbeeld
zou proberen om alle verschillende soorten vinken op de Galapagoseilanden te
vinden, zo zou een wiskundige geïnteresseerd kunnen zijn in het vinden van alle
wiskundige objecten van een bepaald type. Bij zo’n classificatie kan men gebruik
maken van moduliruimtes: meetkundige objecten waarvan de punten één-op-één
overeenkomen met de objecten die we willen classificeren.

Bijvoorbeeld: door alle getallen op volgorde achter elkaar te leggen, verkrijgen
we een lijn, de getallenlijn:

−1 0 2 e π 4 1
2

De punten op de getallenlijn komen één-op-één overeen met de getallen. Daarom
is de getallenlijn een moduliruimte van alle getallen.

Laten we nu proberen om alle lijnen in het vlak die door een bepaald punt gaan
te classificeren. Laat P een punt in het vlak zijn, en stel dus dat we alle lijnen in
het vlak door P willen classificeren. We gaan dus op zoek naar een moduliruimte
voor lijnen door P . Teken nu een cirkel rond P die P als middelpunt heeft:

P

Als nu Q een punt op deze cirkel is, dan krijgen we een lijn door P door een lijn
door P en Q te trekken:

P

Q
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Andersom kan iedere lijn door P op deze manier worden verkregen. We lijken dus
een moduliruimte te hebben gevonden voor alle lijnen door P . Toch is deze cirkel
géén moduliruimte. Immers, als deze cirkel wél een moduliruimte zou zijn, dan
zouden de punten op deze cirkel één-op-één overeen moeten komen met lijnen door
P . Maar neem twee punten P en Q die aan weerszijden van de cirkel liggen:

P

Q

R

De lijn door P en Q en de lijn door P en R zijn hetzelfde! De overeenkomst tussen
punten op de cirkel en lijnen door P is dus ‘twee-op-één’, in plaats van één-op-één:
er zijn steeds tweetallen punten die dezelfde lijn geven.

Hoe krijgen we nu een moduliruimte van alle lijnen door P? Eén manier is het
toekennen van extra structuur aan de lijnen die we willen classificeren. We kunnen
bijvoorbeeld proberen te kijken naar lijnen door P met een richting. Iedere lijn in
het vlak heeft twee richtingen:

P P

Als we nu een punt Q op de cirkel rond P hebben, dan tekenen we de lijn door P
en Q in de richting van P naar Q:

P

Q

De lezer kan nu nagaan dat twee punten aan weerszijden van de cirkel weliswaar
twee dezelfde lijnen opleveren, maar dat de richtingen van deze lijnen verschillen.
Punten op de cirkel komen dus één-op-één overeen met lijnen door P met een
richting. We vinden dus dat de cirkel rond P een moduliruimte is voor de lijnen
door P met een richting.

Deze manier, dus het toekennen van extra structuur aan objecten zodat hun
moduliruimte eenvoudiger te beschrijven is, heet rigidificatie. Dit is een techniek
die wiskundigen vaak gebruiken als ze moduliruimtes van ingewikkelde objecten
willen bestuderen.

Maar wat als we geen extra structuur willen toekennen aan de objecten die we
aan het classificeren zijn? Als we alleen geïnteresseerd zijn in lijnen door P , en
helemaal niet in lijnen door P met een richting, dan kunnen we ook een andere
techniek gebruiken. Manipuleer de cirkel als volgt: pak de cirkel van het vlak,
draai de cirkel vervolgens een keer ‘om zichzelf’ heen, en plak de twee ‘takken’ nu
aan elkaar vast:
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We krijgen zo een nieuwe cirkel. Ieder tweetal tegenover elkaar liggende punten
uit de oude cirkel worden in de nieuwe cirkel samengeplakt tot één punt. Oftewel:
ieder punt op de nieuwe cirkel correspondeert met twee punten op de oude cirkel
die tegenover elkaar liggen, en deze twee punten geven dezelfde lijn door P . Er is
dus een één-op-één overeenkomst tussen punten op de nieuwe cirkel en lijnen door
P , en de nieuwe cirkel is dus een moduliruimte voor de lijnen door P .

We nodigen de lezer uit om bovenstaande constructie zelf uit te voeren. Neem
een vel papier, een paar stiften in verschillende kleuren, en een elastiek. Teken op
het vel papier een punt, en leg het elastiek hier als een cirkel omheen. Kies nu
voor iedere stift een tweetal punten aan weerszijden van het elastiek, en markeer
deze punten met dezelfde kleur. Pak vervolgens het elastiek, en draai het elastiek
een keer om zichzelf heen zoals in bovenstaande afbeelding. U zult zien dat alle
tweetallen punten met dezelfde kleur nu op elkaar worden gelegd.

Het ‘oprollen’ van een meetkundig object om een nieuw meetkundig object
te verkrijgen is ook een techniek die veel wordt toegepast door wiskundigen. Ze
noemen deze techniek het nemen van een quotiënt.

In dit proefschrift bestuderen we de moduliruimte van bepaalde meetkundige
objecten, namelijk compacte Riemannoppervlakken van geslacht g. Bovendien be-
studeren we de differentiaalvormen die op deze moduliruimte leven. In Hoofdstuk
1 bespreken we theorie over submersies van variëteiten, families van compacte Rie-
mannoppervlakken, en hermitische lijnbundels op deze families. We construeren
hier enkele canonieke hermitische lijnbundels en geven canonieke isometrieën tus-
sen deze lijnbundels. In Hoofdstuk 2 bekijken we de moduliruimte van compacte
Riemannoppervlakken van geslacht g. We bespreken dat er geen ‘mooie’ modu-
liruimte bestaat, maar dat dit probleem te verhelpen is door te rigidificeren, of
door quotiënten te nemen. In Hoofdstuk 3 bekijken we gemarkeerde grafen. Dit
zijn grafen waarvan een aantal knopen is gemarkeerd met positieve gehele getal-
len. Deze grafen kunnen worden samengetrokken, en we laten zien dat er formules
kunnen worden gegeven voor het aantal samengetrokken gemarkeerde grafen van
iedere gegeven karakteristiek in termen van het aantal gemarkeerde knopen. Tot
slot bestuderen we in Hoofdstuk 4 tautologische differentiaalvormen op de modu-
liruimte. Met behulp van de gemarkeerde grafen uit Hoofdstuk 3 kunnen we laten
zien dat er niet ‘te veel’ van deze tautologische differentiaalvormen zijn, en we
berekenen enkele relaties tussen deze tautologische differentiaalvormen.
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